
Big Data, Big Promise, Big Challenge: Can Small Area 
Estimation Play a Role in the Big Data Centric World?

Partha Lahiri

JPSM and Department of Mathematics, University of Maryland, College Park
plahiri@umd.edu

University of Pisa Seminar

November 27, 2017

Partha Lahiri (UMD) BIGData April 18, 2016 1 / 57



What is Big Data?
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Characteristics of Big Data

Volume: the sheer amount of data available for analysis.

Velocity: the speed at which these data collection events can occur
and the pressure of managing large streams of real-time data.

Variety: complexity of formats in which Big Data can exist.

Variability: inconsistency of the data across time,

Veracity: ability to trust the data is accurate

Complexity: need to link multiple data sources

Found/Organic Data: not being initially made through the
intervention of some researcher.

Confidentiality Concerns
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Different Types of Big Data Sources

Social media data

Personal data (e.g. data from tracking devices)

Sensor data

Transactional data

Administrative data
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Example 1: Online Prices (AAPOR Report)
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Example 2: Traffic and Infrastructure (AAPOR Report)
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5 

Location data from mobile phones 

Source: Pfeffermann (2017) 



A Few Points to Remember

May not contain the variable(s) of interest

Missing-data

Errors due to measurement, classification, self selection, etc.

Massive complex data for local area

Computational issue
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Three Examples of Local Area Statistics

Estimation of income and poverty statistics for the administration of
federal programs and the allocation of federal funds to local
jurisdictions.

Estimation of crop acreage, crop production, crop yield for the
purpose of local agricultural decision making, payments to farmers if
crop yields are below certain levels.

Estimation of transportation related variables such as purpose of the
trip (work, shopping, social, etc.), means of transportation (car, walk,
bus, subway, etc.), travel time of trip to assist transportation planners
and policy makers who need comprehensive data on travel and
transportation patterns.
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Problem 1: BIGDATA from Administrative Records

Internal Revenue Service Data

Supplemental Nutrition Assistance Program (SNAP) data
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Problem 2: Remote Sensing BIGDATA

Can earth resources satellite data provide useful ancillary data source
for county estimates of crop acreage?

Satellite information is recorded for pixels (a term for picture
elements). A pixel is about .45 hectares;

Based on satellite readings in early Fall, it is possible to classify the
crop cover all pixels. This generates big data.
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A Quote from Bellow et al.

The polar-orbiting Landsat satellites contain a multi-spectral
scanner (MSS) that measures reflected energy in four bands of
the electromagnetic spectrum for an area of just under one acre.
The spectral bands were selected to be responsive to vegetation
characteristics. In addition to the MSS sensor, Landsats IV and
V have a Thematic Mapper (TM) sensor which measures seven
energy bands and has increased spatial resolution. The large area
(185 by 170 km) and repeat (16 day per satellite) coverage of
these satellites opened new areas of remote sensing research:
large area crop inventories, crop yields, land cover mapping, area
frame stratification, and small area crop cover estimation.
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Courtesy of Carol Crawford, NASS-USDA (4 slides)
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Cropland Data Layer 

~ 9 billion pixels! 

Agriculture by crop type and location 

A sample: 

Partha Lahiri (UMD) BIGData April 18, 2016 6 / 57



2014 Deimos-1/UK2 Satellite Tasking 

Along track 
maximum 16 tiles 

(1280 Km) 

Windowing: 
Multiple 

acquisitions per 
orbit 

Full Swath maximum 
image  size : 600 by 

600 Km 

Funding through mid-August 
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September 
17 States Classified 

9 Crops Estimated 

Imagery from April - August 
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Problem 3: Vehicle Probe Project (VPP) BIGDATA

VPP data was first contracted in July 2008.

Contractually, the vendors are required to report data at one minute
intervals for VPP.

Archived in the VPP Suite maintained by CATT Laboratory at UMD.

Currently, the VPP contractually reports traffic conditions on over
7,000 miles of freeways and 32,000 miles of arterials.

Original goal: to enable a wide-variety of transportation operations
and planning applications that require a high-quality data source.

Data contains travel time, speed, historic speed, etc. for different
road segments called Traffic Message Channels (TMC).

Applications include congestion management systems, traveler
information systems, travel-time on changeable message signs.

If data for a whole year, for all 12,295 TMC segments in Maryland
were to be downloaded, the estimated number of records is 6.46
billion. The physical disk size of this data is estimated to be 375GB.
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FIGURE: Location of NJ11-0009 segment in New Jersey, near Philadelphia.
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Communication from GPS (FHWA, 1998) [Ref: Kartika, C.S.D (2015)
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Table 3: County-wise Number of TMC Segments

County Number of TMC Segments

ALLEGANY 114
ANNE ARUNDEL 1,128

BALTIMORE 3,666
BALTIMORE CITY 8

BALTIMORE COUNTY 64
CALVERT 52
CAROLINE 120
CARROLL 305

CECIL 299
CHARLES 263

DORCHESTER 78
FREDERICK 617
GARRETT 86
HARFORD 491
HOWARD 634

KENT 22
MONTGOMERY 1,905

PRINCE GEORGE’S 1,694
QUEEN ANNE’S 148

SOMERSET 30
ST. MARY’S 66

TALBOT 30
WASHINGTON 261

WICOMICO 107
WORCESTER 107

Total 12,295

8
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How do we correct Big Data?

Look for existing sample survey data or conduct a new survey

Some features of sample surveys

Finite populations

Representativeness

Large samples for large areas, but small or no sample for small areas

Variable(s) of interest can be included

Chance selection: equal/epsem

Stratification to improve precision and administrative control

Ref: Cochran (1977); Kalton (1983); Lohr (2010)
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Sample Survey Data

Problem 1: ACS

Problem 2: June Enumerative Survey

Problem 3: National Household Travel Survey (NHTS) and
American Community Survey (ACS)
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How do we combine Big Data with Sample Survey Data?

Data Fusion

Sample Survey Data
National Household Travel Survey (NHTS)
American Community Survey (ACS)

Aggregated Administrative Data
Supplemental Nutrition Assistance Program (SNAP) data (county
level)
Internal Revenue Service Aggregate data (state level)

BIGDATA
Vehicle Probe Project (VPP)
National Performance Management Research Data Set (NPMRDS)
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A Proof of Data Fusion Concept
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Two Cases

Case 1: No or little overlap between the two data sources

Case 2: Most of the survey data can be linked with Big Data
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Case 1: Statistical Matching
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Small Area Level Model

Ref: Fay and Herriot (JASA 1979)

For i = 1, · · · ,m,

Level 1: (Sampling Distribution): yi |θi ∼ N(θi , ψi );

Level 2: (Prior Distribution): θi ∼ N(x ′iβ,A)

where

m : number of small area;

yi : direct survey estimate of θi ;

θi : true mean for area i ;

x i : p × 1 vector of known auxiliary variables;

ψi : known sampling variance of the direct estimate;

The p × 1 vector of regression coefficients β and model variance A
are unknown.
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Estimation Method

Parameter of Interest: θi

Inferences based on the posterior distribution of θi :

θi |y ;β,A
ind∼ N(θ̂Bi , σ

2
i (A)),

where

θ̂Bi = (1− Bi )yi + Bix
′
iβ

Bi = ψi
A+ψi

σ2i (A) = (1− Bi )ψi

EB: Treat β and A fixed and estimate them by consistent estimators (e.g.,
ANOVA, ML, REML, adjusted ML)
HB: Put priors, possible non-informative flat priors, on β and A. The
inference is based on the posterior distribution of the target parameter.
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The James-Stein Estimator

θ̂JSi = (1− B̂JS)yi , where B̂JS =
m − 2∑m
j=1 y

2
j

.

Results:

Total MSE (TMSE) of direct estimator:
∑m

j=1 E [(yi − θi )2|θ] = m

TMSE of JS estimator:
∑m

j=1 E [(θ̂JSi − θi )2|θ] ≤ m − (m−2)2
m−2+

∑
i θ

2
i
.

(Efron)

Remarks:

If θi = 0, (i = 1, · · · ,m), then TMSE of JS≤ [m − (m − 2)] = 2.
Thus, the largest reduction is obtained when θi = 0 (i = 1, · · · ,m)
and m large.

If any |yj | → ∞ , the JS converges to the direct.
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Measurement Error Issue in Big Data

Two Situations:

Situation 1: The sources of measurement error can be reasonably
identified and we have enough data to explain them.

Situation 2: The sources cannot be easily detected or we do not
have data to explain the measurement error even if the sources of
error are identified.
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Situation 1: An Example

Level 1 (Sampling model):

(
yi
x i

)
|θi ,X i

ind∼ N

((
θi

X i

)
,

(
ψiy 0

0 Ψix

))
Level 2 (Linking model): θi |X i

ind∼ N(X ′iβ,A)

Remark: The above model reduces to the FH model when Ψ = 0.

The Bayes estimator of θi under FH:

θ̂Bi = (1− Bi )yi + Bix
′
iβ,

where

Bi =
ψiy

A + ψiy

The Bayes estimator of θi under FH with ME:

θ̂B∗i = (1− B∗i )yi + B∗i x
′
iβ,

where

B∗i =
ψiy

A + ψiy + β′Ψix β
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Remarks

Under the FH-ME,

MSE(θ̂i
B ) = (1 − Bi )ψiy + Bi

2β′Ψix β,

which i s greater than ψiy i f β′Ψix β > A + ψiy but

MSE(θ̂i
B *) = (1 − Bi

∗)ψiy < ψiy

Ref: Datta et al. (1999; 2002); Ybarra and Lohr (2008); Marchetti et al. 

(2015), Mosaferi (2015).
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Situation 2: A Partial Solution (Ref: Datta and Lahiri
1995)

An Outlier Resistent Model

For i = 1, · · · ,m,

Level 1: (Sampling Distribution): yi |θ
ind∼ N(θi , ψi );

Level 2: (Prior Distribution): θi |β, A
ind∼ 1√

A
pi

(
θi−x ′iβ√

A

)
where pi (x) =

∫∞
0 r1/2ψ(xr1/2)gi (r)dr , φ(x) being the pdf of a standard

normal distribution.

To retain shrinking in presence of an outlier in residual, use a heavy tail
distribution (e.g., Cauchy) for the mixing distribution gi ()̇
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Case 2: Record Linkage
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28 

Dependent  Independent 

Y X 

Enumerated 
JAS Segments 

CDL Classified 
Acres 

Soybeans 227 273 

Wheat 337 541 

REGRESSION 
VARIABLES: 
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Battese, Harter and Fuller (1988 JASA)
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How to make BIGDATA useful?
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How do we combine information?

yij : value of the study variable for the jth unit of the i small area
population (i = 1, · · · ,m; j = 1, · · · ,Ni )

We are interested in estimating the finite population means:

Ȳi = N−1i

Ni∑
j=1

yij .

Nested Error Regression Model
For i = 1, · · · ,m; j = 1, · · · ,Ni

yij = x ′ijβ + vi + eij ,

where xij is a p × 1 column vector of known auxiliary variables; {vi} and

{eij} are all independent with vi
iid∼ N(0, σ2v ) and eij

iid∼ N(0, σ2e )
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An Example

Estimation of the number of hectares of corn for 12 Iowa counties
based on the 1978 June Enumerative Survey and satellite data.

yij : the number of hectares of corn in the jth segment of the ith
county as reported in the June Enumerative Survey.

x ′ij = (1, x1ij , x2ij), where x1ij (x2ij) is the number of pixels classified as
corn (soybean) in the jth segment of the ith county.

X̄ ′ = (1, X̄1i , X̄2i ), where X̄1i (X̄2i ) is the mean number of pixels per
segment classified as corn (soybean) for county i .
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Unit Level Model with BIGDATA (Ref: Gershunskaya and
Lahiri 2011)

Model:
For i = 1, · · · ,m, ; j = 1, · · · ,Ni ,

yij = x
′
ijβ + vi + eij ,

where

vi
iid∼ N(0, τ2)

eij
iid∼ (1− zij)N(0, σ21) + zijN(0, σ22)

zij is the mixture part indicator random variable with

zij |π
iid∼ Bin(1, π)
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Real Time Traffic Prediction
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Smart City Context to Traffic Data
Ref: Cirillo et al. (2017)

• Smart cities are composed of many networks, and to each of them it is possible to
associate one or several datasets.

• The White House issued a press statement announcing a new Smart Cities initiative to
help communities tackle local challenges, improve city services and quality of life.

• Transportation is one such physical network, that is increasingly being powered by large
amounts of collected data.

• Traffic data help users avoid congested and slow areas and transport operators reduce and
manage congestion.

• Such decision support systems are collectively called Advanced Traveler Information
Systems (ATIS).
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Requirement for Traffic Prediction

• Robust Traffic predictions is in high demand
• The large amount of literature published recently dealing with traffic predictions is a

testament to the demand: Transportation Research Part C recently published a special
issue focusing just on traffic predictions (Zhang, 2014).

• The benefits of prediction are quite numerous, especially because it allows proactive
reaction to developing conditions.

• Faster response to changing conditions allows the system to react quickly, reducing
wasted time, energy and resources.

• The data revolution in transportation is making real-time data more ubiquitously
available both in space and time.

• Leveraging this data to make robust short-term predictions will spur the next revolution
in transportation.
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Traffic Data Sources

• Traditionally, traffic data collection was very expensive: it required roadside counters
(often people with counters) and detectors (embedded loop, radar, microwave, camera,
etc.)

• Also detector collection is geographically very limited, required constant calibration and
maintenance.

• Since mid 2000s, however, ubiquitous use of GPS devices capable of mobile telemetry —
especially by the freight industry — made it possible to collect data continuously and
over a large area for a fraction of the cost of traditional methods.

• Since all vehicles do not transmit at all times, this is considered as ”probe” data, where
data is collected from only a sample (probe) of vehicles on the roadway.

• GPS probe data can be collected anywhere an equipped, transmitting vehicle can travel.
• Therefore, it gives potential visibility over the state of the whole network.
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Vehicle Probe Project at University of Maryland

• As seen in figure 1 vehicles transmit data to a central control/dispatch center
• Usually, vehicles transmit location, direction of travel and current speed
• This data is then collected by companies specializing in probe data (Inrix Inc., Here Inc.,

TomTom, etc.) and aggregated to roadway segments using the location and direction
information

• Roadway segmentation is traditionally based on Traffic Message Channel (TMC) codes,
which divide a roadway from intersection to intersection

• This data is usually aggregated to a predefined reporting window
• States in the I-95 Corridor Coalition have been purchasing this data from the providers

at one minute frequencies since 2008
• The Center for Advanced Transportation Technologies (CATT) at UMD is tasked with

archiving this data, and creating analytic tools for state agencies to use
• This suite of tools, including the data archival is called the Vehicle Probe Project (VPP)



Figure: Time series plots of speed for two TMCs and two consecutive
weeks
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Figure: First order difference of speed data for TMC 110P04622 and TMC
110P04621 on April 23rd and April 30th.
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Mathematical Formulation of ARIMA with
Auxiliary Variables

ψw(B)(1−B)dyt,w = xTt,wγw + ηw(B)zt,w,

where
ψw(B) = 1− ψ1wB − · · · − ψpwB

p,
ηw(B) = 1− η1wB − · · · − ηqwB

q,
B is a back shift operator: Bdyt,w = yt−d,w,
zt,w are white noises that follow normal distributions with zero means and constant
variance σ2,
xt,w is a s× 1 vector of known auxiliary variables,
γw is a s× 1 vector of unknown fixed coefficients,
ψ1w, · · ·ψpw and η1w, · · · ηqw are unknown model parameters.
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Key Assumptions

The key assumption is that the traffic patterns do not change between the time period used
for model fitting and the time period when predictions are made.

• Weekly modeling is used, i.e. assume traffic conditions repeat on a given day of week
• As per figure 4, this is a robust assumption, as the majority of traffic patterns repeat

across the day over different weeks
• We define w as the week in which predictions are required, and models are fit to week
w − 1, as shown:

ψw(B) = ψw−1(B)

ηw(B) = ηw−1(B)

γw = γw−1
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Algorithm

• The first step is model selection, for each given segment, and day
• 27 ARIMA orders (p, d, q) are tested for each segment, where each of p, d and q can take

values from {0, 1, 2}
• The model with the lowest Bayesian Information Criterion (BIC) is selected

• The most reasonable selected model is used to make predictions for the next week
• Predictions are done online, on the incoming stream of data
• Based on the ARIMA order specification, data points from the required time steps before

the most recent are used
• Predictions are made every minute, up to 30 minutes into the future

• Predictions are stopped at the end of the day
• The first prediction is only made after sufficient number of data points have been received

(informed by the ARIMA order; for example 2 observation for ARIMA(0, 1, 0))
• Similarly predictions of future minutes can be based entirely on interim predictions (for

example, predictions of minute 20 is based on predicted values of minutes 18 and 19 for
ARIMA(0, 1, 0))
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Data Used

• Data from 3 weeks in September 2016 are used to demonstrate the proposed framework
• Only weekday data is used for the study
• The first set of models are fit to data from the week of September 12
• These models are used to predict for each corresponding day in the week of September

19
• Similarly, the second set of models are fit to real data collected in the week of

September 19
• Predictions from the second set of models are made for the week of September 26
• Data from 2,654 segments that form the mobility corridor network of Maryland are used
• Over the 15 days examined, for the 2,654 segments the total size of data is slightly over

57 million records
• Predictions up to 30 minutes in the future for each segment for all 15 days result in

about 1.7 billion records
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Network Map

The complete map of the studied network is presented in the figure below

Figure 5: Map of the Studied Network
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Imputations and Interpolations

• The VPP does not report data at rounded minutes
• Consequently, there is uneven interval between two data points
• Speed readings at the exact minute are computed by linear interpolation between the

observations received before and after the minute
• Sometimes data over short periods is not received or goes missing due to transmission

or other failures
• Such short duration data losses are also covered by linearly interpolating between the

available data points
• The data is imputed from source with historic speeds when real-time observations are

completely lacking
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Selected ARIMA Models

The following table gives the ARIMA order and the number of times it was selected as the
most reasonable model for each segment, each day. The sum total of selected models is
26,540 (2,654 segments, 10 days), out of 716,580 total fitted models. The most selected
orders are highlighted.

Order Count Order Count Order Count
(0, 0, 0) NA (1, 0, 0) 5,700 (2, 0, 0) 817
(0, 0, 1) 0 (1, 0, 1) 185 (2, 0, 1) 239
(0, 0, 2) 0 (1, 0, 2) 886 (2, 0, 2) 381
(0, 1, 0) 3,077 (1, 1, 0) 589 (2, 1, 0) 154
(0, 1, 1) 405 (1, 1, 1) 10,995 (2, 1, 1) 1,254
(0, 1, 2) 196 (1, 1, 2) 567 (2, 1, 2) 1,095
(0, 2, 0) 0 (1, 2, 0) 0 (2, 2, 0) 0
(0, 2, 1) 0 (1, 2, 1) 0 (2, 2, 1) 0
(0, 2, 2) 0 (1, 2, 2) 0 (2, 2, 2) 0

Table 1: Selected ARIMA Orders



Figure: The actual and predicted values of speed data for TMC
110P04622 on April 30th.
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Relative Root Mean Squared Prediction Error

• To robustly quantify the errors we propose the RRMSPE as defined below:

RRMSPE =

√√√√ 1

T

T∑
t=1

(
ŷt − yt
yt

)2

,

where
ŷt is the predicted speed at time t,
yt is the real observed speed at time t,
T is the total number of time steps. For a day, T = 1440, or T = 60 for an hour.

• Note that the RRMSPE is a relative error, and can be interpreted as the percent
deviation of the predicted value from the true value

• Further, the error is calculated over the whole network for given prediction intervals
(lag). Thus it includes freeways and arterials

• Due to limitations of the probe data, it is not as robust on heavily signalized arterials as
compared to freeways (Kaushik et al., 2015, 2014)
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Error Plots

• We define predictions intervals as lags: minutes prior to current minute that were used
to predict the speeds at current minute

• A lag of 5 means speed at the current minute was predicted from data received 5 minutes
ago

• The following slides show the RRMSPE calculated for important lag intervals
• Only lags of 5, 10, 15, 20, 25 and 30 minutes are shown
• For more complex plots, lags of 20 and 25 minutes are not shown
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Relative Estimate Residuals

• In order to find out if the models are optimistic or pessimistic, relative residuals are
computed

• Relative residuals is similar to RRMSPE, with the difference that the residuals are not
squared

• This allows one to directly examine the signed percent error in the predictions
• We compute relative residuals as shown:

Rrt =
ŷt − yt
yt

, (1)

where
Rrt is the relative residuals at time t,
ŷt is the predicted speed at time t,
yt is the real observed speed at time t.

• The following figure plots box plots with the relative residuals for each minute of the day
• There are, therefore 26,540 points in each of 1,440 boxes, one box for each minute of

the day
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David Salsburg, ASA Connect Discussion

”...D.J. Finney once wrote about the statistician whose
client comes in and says, ”Here is my mountain of trash.
Find the gems that lie therein.” Finney’s advice was to
not throw him out of the office but to attempt to find out
what he considers ”gems”. After all, if the trained
statistician does not help, he will find some one who
will....”
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SAE Conferences

SAE 2015: First Latin American ISI Satellite Conference on Small
Area Estimation, Santiago, Chile
( http://www.encuestas.uc.cl/sae2015/program_sae.html )

SAE 2014: Small Area Estimation Conference (Poznan, Poland, 2014)

SAE 2013: The First Asian ISI Satellite Meeting on Small Area
Estimation (Bangkok, Thailand, 2013)

SAE 2011: Conference on Small Area Statistics (Trier, Germany,
2011)

SAE 2009: Rhine River Cruise Conference 2009 on Recent Advances
in Small Area Estimation (Germany, 2009)

SAE 2009: SAE 2009 Conference on Small Area Estimation (Elche,
Spain, 2009)

SAE 2007: IASS Satellite Conference on SAE (Pisa, Italy, 2007)

SAE 2001: International Conference on SAE and Related Topics
(Maryland, USA, 2001)
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THANK YOU!
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