Jean Monnet Chair Analysis of European Data by Small Area Methods

Lecture 2: Estimation for planned and unplanned domains, Horvitz and Thompson estimates of domain total http://sampleu.ec.unipi.it

Estimation for domains

Measures of *precision (MSE)* are usually computed to evaluate the quality of a population parameter estimate and to obtain valid inferences.

The estimation method and the sampling design determine the properties of the MSE and of the sampling error .

• The basic design-consistent *Horvitz-Thompson estimator* is the most natural estimator to use if there is no auxiliary information available at the estimation stage.

> SAE generally include direct estimates where sampling weights, calibration, reweighting had their effect

- Proper estimation conforms to the sampling design.
- Sampling weights are incorporated in the estimation process
- Sampling weights derive from: stratification, clustering, and multi-phase or multi-stage information

Use auxiliary data whenever possible to improve the reliability of the estimates (decrease MSE). Evaluate the use of the auxiliary data.

Stat Canada suggestion 1:

"Whenever auxiliary data are available for sample units, together with known population totals for such data, consider using calibration estimation ("evolution of HT estimator!") so that the weighted auxiliary data add up to these known totals. This may result in improved precision and lead to greater consistency between estimates from various sources."

Stat Canada suggestion 2:

"Incorporate the requirements of small domains of interest at the sampling design and sample allocation stages (Singh, Gambino and Mantel, 1994).

If this is not possible at the design stage, or if the domains are only specified at a later stage, consider special estimation methods (small area estimators) at the estimation stage. These methods "borrow strength" from related areas (or domains) to minimize the mean square error of the resulting estimator (Platek et al., 1987; Ghosh and Rao, 1994; Rao, 1999)."

Fixed and finite population $U = \{1, 2, ..., k, ..., N\}$, where k refers to the label of population element

The fixed population is said to be generated from a superpopulation.

Variable of interest y

For practical purposes, we are interested in one particular realized population U with $(y_1, y_2, ..., y_N)$, not in the more general properties of the process (or model) explaining how the population evolved.

NOTE: In the *design-based* approach, the values of the variable of interest are regarded as *fixed but unknown* quantities. The only source of randomness is the *sampling design*, and our conclusions should apply to hypothetical repeated sampling from the fixed population.

Basic parameters for study variable y for the whole population:

Total
$$t = \sum_{k \in U} y_k$$

Mean $\overline{y} = \sum_{k \in U} y_k / N$

We discuss here the estimation of totals

In practice, the values y_k of y are observed in an *n* element sample $s \subset U$ which is drawn by a sampling design giving probability p(s) to each sample s

NOTE: The sampling design can be *complex* involving stratification and clustering and several sampling stages

The design expectation of an estimator \hat{t} of population total t is determined by the probabilities p(s):

Let $\hat{t}(s)$ denote the value of estimator that depends on y observed in sample s

Expectation is $E(\hat{t}) = \sum_{s} p(s)\hat{t}(s)$ Design unbiased estimator: $E(\hat{t}) = t$ Design variance: $Var(\hat{t}) = \sum_{s} p(s) (\hat{t}(s) - E(\hat{t}))^2$ NOTE: $Var(\hat{t})$ is an unknown parameter

An *estimator* of design variance is denoted by $\hat{V}(\hat{t})$

Variance estimators are derived in two steps:

(1) The theoretical design-based variance $Var(\hat{t})$ (or its approximation if the theoretical design variance is intractable) is derived

(2) The derived quantity is estimated by a design unbiased or design-consistent estimator $\hat{V}(\hat{t})$

NOTE: An estimator is *design consistent* if its design bias and variance tend to zero as the sample size increases

Inclusion probability: An observation *k* is included in the sample with probability $\pi_k = P\{k \in s\}$

The inverse probabilities $a_k = 1/\pi_k$ are called *design weights*

Sample membership indicator:

 $I_k = I\{k \in s\}$ with value 1 if k is in the sample and 0 otherwise

Expectation of sample membership indicator $E(I_k) = \pi_k$

Probability of including both elements k and l ($k \neq l$) is $\pi_{kl} = E(I_k I_l)$ with inverse $a_{kl} = 1/\pi_{kl}$ ($a_{kl} = a_k$ when k = l)

The covariance of I_k and I_l is $Cov(I_k, I_l) = \pi_{kl} - \pi_k \pi_l$

Estimation for domains

Domain estimation of totals or averages of variable of interest y over D non-overlapping domains $U_d \subset U$, d = 1, 2, ..., d, ..., D, with possibly known domain sizes N_d

Example: Population of a country is divided into *D* domains by regional classification, with N_d households in domain U_d

The aim is to estimate statistics on household income for the regional areas (domains)

The key parameter is **domain total**: $t_d = \sum_{k \in U_d} y_k$,

where y_k refers to measurement for household k

Why domain totals are important?

Totals are basic and the simplest descriptive statistics for continuous (or binary) study variables

Many other, more complex statistic are functions of totals

Domain ratio:
$$R_d = \frac{t_{dy}}{t_{dz}} = \frac{\sum_{k \in U_d} y_k}{\sum_{k \in U_d} z_k}$$

Estimator:
$$\hat{R}_{d} = \frac{\hat{t}_{dy}}{\hat{t}_{dz}} = \frac{\sum_{k \in S_{d}} a_{k} y_{k}}{\sum_{k \in S_{d}} a_{k} z_{k}}$$

Domain mean: $\overline{y}_d = t_d / N_d$ Estimator: $\hat{\overline{y}}_d = \hat{t}_d / N_d$ or $\hat{\overline{y}}_d = \hat{t}_d / \hat{N}_d$

Estimation for planned domains - 1

Sample is divided into subsamples s_d , d = 1,...,D

Planned domains:

Stratified sampling with domains = strata

- The population domains U_d can be regarded as separate subpopulations
- Domain sizes N_d in domains U_d are assumed known
- Sample size n_d in domain sample $s_d \subset U_d$ is fixed in advance
- Standard population estimators are applicable as such

Estimation for planned domains - 3

NOTES

Stratified sampling with a suitable *allocation scheme* (e.g. optimal (Neyman) or power (Bankier) allocation) is advisable in practical applications, in order to obtain control over domain sample sizes

Singh, Gambino and Mantel (1994) describe allocation strategies to attain reasonable accuracy for small domains, still retaining good accuracy for large domains

Estimation for unplanned domains - 1

Unplanned domains: A single sample *s* of size *n* is drawn from population *U*. Domain samples are $s_d \subset U_d$

Domain sample sizes n_d cannot be considered fixed but are *random*

Extended domain variable of interest y_d defined as:

$$y_{dk} = y_k$$
 for $k \in U_d$ and $y_{dk} = 0$ for $k \notin U_d$

In other words, $y_{dk} = I\{k \in U_d\}y_k$

Because $t_d = \sum_{k \in U_d} y_k = \sum_{k \in U} y_{dk}$, we can estimate domain total of *y* by estimating the population total of y_{dk}

Horvitz-Thompson estimator of domain totals

Horvitz-Thompson (HT) estimator (*expansion estimator*) is the basic *design-based direct* estimator of the domain total $t_d = \sum_{k \in U_d} y_k$, d = 1, ..., D:

$$\hat{t}_{dHT} = \sum_{k \in U_d} I_k y_k / \pi_k = \sum_{k \in S_d} y_k / \pi_k = \sum_{k \in S_d} a_k y_k$$
(1)

HT estimates of domain totals are additive: they sum up to the HT estimator $\hat{t}_{HT} = \sum_{k \in S} a_k y_k$ of the population total $t = \sum_{k \in U} y_k$

As $E(I_k) = \pi_k$, the HT estimator is design unbiased for t_d

Variance estimation for HT - 1

Standard variance estimator for \hat{t}_{dHT} under planned domains:

$$\hat{V}(\hat{t}_{dHT}) = \sum_{k \in S_d} \sum_{l \in S_d} (a_k a_l - a_{kl}) y_k y_l$$
(2)

An alternative Sen-Yates-Grundy formula:

$$\hat{V}(\hat{t}_{dHT}) = \sum_{k \in s_d} \sum_{l < k; l \in s_d} \left(\frac{a_{kl}}{a_k a_l} - 1\right) (a_k y_k - a_l y_l)^2$$
(3)

NOTE: Both (2) and (3) are somewhat impractical... Why?

Variance estimation for HT - 3

Variance estimation for planned domains in practice

$$\hat{V}_{A}\left(\hat{t}_{dHT}\right) = \frac{1}{n_{d}(n_{d}-1)} \sum_{k \in s_{d}} \left(n_{d}a_{k}y_{k} - \hat{t}_{dHT}\right)^{2}$$
(4)

For example, SAS Procedure SURVEYMEANS uses (4)

Variance estimation for HT - 3

Unplanned domains:

Variance estimator should account for random domain sizes Approximate variance estimator by using *extended domain variables* y_{dk} :

$$\hat{V}_{U}\left(\hat{t}_{dHT}\right) = \frac{1}{n(n-1)} \sum_{k \in S} \left(na_{k}y_{dk} - \hat{t}_{dHT}\right)^{2}, \qquad (5)$$

where *n* is the total sample size NOTE: e.g. SAS procedure SURVEYMEANS uses (5)

NOTE: Extended domain variables are $y_{dk} = I\{k \in U_d\}y_k$ Recall: $y_{dk} = y_k$ if $k \in U_d$, 0 otherwise

Example: estimation for domains

Happy Land Food Survey Stratified two stage sample survey H=5 strata; N=2000 households A= 200 villages in HL (clusters) a=50 sampled villages

- n=500 households
- Complete coverage of the target population
- Full response of the interviewed households

Target Population (households in HL) Divided into 4 Zones

H code	Sa-weights	village	stratum	FoodExp	H-size	H-inco	ome	HH-educ		HH-age	
1	Ŭ	<u> </u>	north HL			1	2500		1	C C	56
2		1	north HL	16,5		1	2800		1		70
3		1	north HL	18		1	2000		1		20
4		1	north HL	17		1	4500		1		60
5		1	north HL	46,5		1	8000		1		40
6		1	north HL	45		1	7000		1		51
7		1	north HL	15		1	3500		1		76
8		1	north HL	60		2	2800		1		20
9		1	north HL	15		2	2500		1		51
10		1	north HL	18		2	4000		1		32
11		2	north HL	22,5		2	5000		1		47
12		2	north HL	20		2	8000		1		35
13		2	north HL	97		2	5500		1		58
14		2	north HL	57		2	6000		1		27
15		2	north HL	39		2	3000		1		38
16		2	north HL	30		2	4000		1		40
17		2	north HL	42		2	3000		1		19

CENTRAL HL

village	hh x village	foodexp	h size	income
5	10	171	16	26500
6	10	181,5	20	19700
7	10	212	20	31300
8	10	429,5	26	50800
9	10	460,5	42	54400
10	10	537,5	52	70200
11	10) 439	38	60700
12	10	266,5	15	70500
13	10	317,5	20	81100
14	10) 394,5	24	82200
15	10	380,5	31	57300
16	10	438	48	81400
17	10) 370	39	77200
total	130	4598	391	763300

EASTERN HL

village	hh x village	foodexp	h size	Income
38	10) 545	73	79000
39	10	478	57	102500
40	10	397	21	119500
41	10	429	31	162000
42	10	569,7	38	152000
43	10	543	45	133000
	60	2961,7	265	748000

WESTERN HL

village	hh x village	foodexp	h size	Income
44	10	604	42	133000
45	10	459,5	44	118000
46	10	544	44	142500
47	10	305,5	22	147500
48	10	593	38	212000
49	10	342	35	99500
50	10	647	57	227000
	70	3495	282	1079500

7 villages

6 villages

13 villages

NORTHERN HL							
village	hh x village	foodexp	h size	Income			
1	10	263	13	39600			
2	10	399,5	20	50000			
3	10	453,5	33	124400			
4	10	270,5	37	46000			
32	10	573,5	52	129500			
33	10	390,5	30	68000			
34	10	379,5	39	90000			
35	10	606,5	48	110000			
36	10	482	48	120000			
37	10	452,5	56	67500			
total	100	4271	376	845000			

10 villages

SOUTHERN HL							
village	hh x village	foodexp	h size	Income			
18	10	404,5	43	61500			
19	10	540	47	96700			
20	10	472	65	100500			
21	10	541	55	74800			
22	10	382,5	10	118000			
23	10	496	17	125800			
24	10	392	20	154000			
25	10	282,5	20	119000			
26	10	395,5	25	112000			
27	10	449,5	36	115000			
28	10	406,5	30	99400			
29	10	525	40	114500			
30	10	446,5	40	103000			
31	10	561	50	119000			
total	140	6294,5	498	1513200			

14 villages

Probability of inclusion of k-th hh

This is what I need: $1/\pi_k = a_k$ Sampling weight for the *k*-th household $\pi_k = \pi_{hi} \times \pi_{hk/i}$

 π_{hi}

probability of inclusion of the village (*h-th* stratum)

 $\pi_{hk|i}$

probability of inclusion of the household, given that the *i-th* village is included (*h-th* stratum)