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The design of a random sample specifies the type of randomised procedure applied in sample 
selection. It also specifies how the population parameters are to be estimated from the sample 
results.  

The selection procedure and the estimation procedure form two aspects of the sample design. 

As to the selection procedure, many types of designs are possible and used in practice.  

The procedure may for example give the same (equal) chance of appearing in the sample to all 
elements in the population, or some units may be given a higher chance than others.  

We may select the elements individually, or first group them into larger clusters and apply the 
selection procedure to those clusters.  

We may partition the population into strata and apply any of the above procedures separately 
within each stratum.  

Each randomised procedure in fact determines a different set of samples which can in 
principle be selected using that procedure and the chance of selecting a particular sample 
from among those.  

But to be random, any selection procedure must ensure that every unit in the population 
receives a specified non-zero chance of appearing in the sample to be selected. 
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The estimation procedure involves the statistical or mathematical forms in terms of sample 
values and possibly also of information from other sources external to the sample; it provides 
estimators which are used to produce sample estimates of population parameters of interest.  

The procedure also includes the estimation of measures of uncertainty (‘sampling error’, 
‘confidence intervals’ etc.) to which the sample results are subject. 

 

The particular units which happen to be selected into a particular sample depends on chance, 

the possible outcomes being determined by the procedures specified in the sample design. This 

means that, even if the required information on every selected unit is obtained entirely without 

error, the results from the sample are subject to a degree of uncertainty due to these chance 

factors affecting the selection of units.  

Sampling variance is a measure of this uncertainty.  
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The distribution of estimates from all possible samples with a given design (i.e. selection and 

estimation procedure) is called the sampling distribution of the estimator.  

The average of the sampling distribution, i.e. of all possible samples estimates weighted 

according to their probabilities, is called the expected value.  

Symbolically we may express this as follows. If ps is the probability and ys the estimate from a 

given sample s, the expected value of the estimator y is: 

𝐸(𝑦) = ∑ 𝑝𝑠 ∙ 𝑦𝑠

𝑠

 

where the sum is taken over all possible samples.  

The variance of y is defined as: 

𝑉𝑎𝑟(𝑦) = ∑ 𝑝𝑠 ∙ [𝑦𝑠 − 𝐸(𝑦)]2

𝑠
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For various reasons, the expected or average value from all possible samples may not equal the 

actual population value (Y).  

In the absence of measurement errors, this may arise from the particular estimation procedure, 

in which case it is called the technical or estimation bias: 

Bias = E(y) – Y 

The combined effect of variance and bias is the mean squared error, which is defined in terms 

of the squared differences of sample estimates ys from the actual population value Y: 

𝑀𝑆𝐸(𝑦) = ∑ 𝑝𝑠 ∙ [𝑦𝑠 − 𝑌]2 = 𝑉𝑎𝑟(𝑦) + (𝐵𝑖𝑎𝑠)2

𝑠
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An illustration from Simple random sampling 

The simplest design is one in which every possible set of, say, n units from a population of N 
units receives the same chance of selection.  

This is called a simple random sample (SRS).  

There are 
𝑁!

(𝑁−𝑛)!∙𝑛!
 such samples, and each receives a probability of selection equalling inverse 

of the above number.  

In fact, any set of s, 1≤s≤n, units receives the same chance of coming into the sample as any 
other set of the same size.  

Different units (which corresponds to s=1) all receive the same chance, the chance being n/N. 
Other designs depart from simple random sampling by:  

(i) suppressing some of the all possible samples noted above, and/or  

(ii) by giving different units (and hence different samples) different probabilities of selection. 
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A Numerical Example 

To illustrate some basic ideas, let us consider a very small sample to be drawn from a very 
small population.  

Suppose the population consists of 8 units (N=8), from which a sample of n=4 units is 
selected with simple random sampling. Let us also assume that for the unit number j, from 1 
to 8, the value Yj of variable of interest equals j itself. That is, we have a population of 8 

units with values as shown below. 

 

Two important properties of the distribution of Yj values are the mean 

�̅� = ∑ 𝑌𝑗𝑗 𝑁⁄ = 4.5                                                                                                             (1) 

and population variance, which is a measure of the variability among the Yj values 

𝜎2 = 𝑉𝑎𝑟(𝑌𝑗) = ∑ (𝑌𝑗 − �̅�)2
𝑗 𝑁 = 5.25⁄                                                                        (2) 

or a slightly different version used in sampling theory 

𝑆2 =
𝑁

𝑁−1
∙ 𝜎2 = ∑ (𝑌𝑗 − �̅�)2

𝑗 (𝑁 − 1) = 6.0⁄                                                                (3) 
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With simple random sampling it can be seen that there are in this example  
8!

(8 − 4)! ∙ 4!
= 70 

 
possible samples of distinct units, such as samples with units  

(1,2,3,4), (1,2,3,5), (1,2,3,6), ... (1,2,4,5), (1,2,4,6), ... etc.  

Each sample s appears with the same probability ps=1/70. For each particular sample we can 

compute the mean of its n values 

�̅�𝑠 =
1

𝑛
∙ ∑ 𝑦𝑖𝑖∈𝑠 |𝑠𝑎𝑚𝑝𝑙𝑒 𝑠.                                                                                                                     (4) 

Table 2 represents the frequency distribution of the means of all the 70 possible samples. 

The average of all the 70 possible samples is called the expected value of the sampling 
distribution, and equals  

𝐸(�̅�) = ∑ 𝑓𝑠 ∙ �̅�𝑠 ∑ 𝑓𝑠⁄ = 4.5,  

which is the same as the actual population mean. We say that the sample provides an unbiased 

estimator of the population mean. Here fs is the frequency (number of samples) with mean �̅�𝑠. 
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How variable are the results from one sample to another? 

This is measured by sampling variance (i.e. variance of the sampling distribution), defined as  

𝑉𝑎𝑟(�̅�) = 𝐸(�̅� − 𝐸(�̅�))2,                                                                                                (5)  

that is, the expected (average) value of the squared deviations of sample means from their 
value averaged over all samples.  
 
In our example we can write  

𝑉𝑎𝑟(�̅�) =
1

70
∙ ∑ (�̅�𝑠 − 4.5)270

𝑠=1 ,  

or in terms of the frequency distribution found above as  

𝑉𝑎𝑟(�̅�) = ∑ 𝑓𝑠 ∙ (�̅�𝑠 − 4.5)2 ∑ 𝑓𝑠⁄ = 0.75.  
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In a simple random sample, this sampling variance is in fact related in a straightforward way to 
population variance and sample size:  

𝑉𝑎𝑟(�̅�) = (
𝑁−𝑛

𝑁−1
) ∙

𝜎2

𝑛
,  

or more commonly written as  

𝑉𝑎𝑟(�̅�) = (1 − 𝑓) ∙
𝑆2

𝑛
                                                                                                (6)  

where f=n/N is the sampling rate, and S
2 

is a slightly modified definition of population variance 

(equation 3), introduced because this form is more convenient in discussing sampling theory. 

 

In our example, f=4/8, n=4, and S
2
=6.0, giving  

𝑉𝑎𝑟(�̅�) = (1 − 0.5) ∙
6.0

4
= 0.75 , 

which is exactly as computed above from the full sampling distribution. 
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Population variance 

More diverse the units in the population, larger in direct proportion will be the variability 
between estimates from samples of a given size.  
It stands to reason that for a homogeneous population a small sample size may suffice, but for a 
heterogeneous population a large number of observations would be required to have the same 
confidence in the results.  
Let us consider a few examples of differences in population variances.  
 
 
In a population of farms, farms of different sizes may differ greatly in their production (large 
population variance for variables related to production), but much less so in their yields i.e. 
production per unit of area.  
Similarly, in a population of economic establishments there may be great differences among the 
establishments in terms of total output, but much smaller differences in productivity i.e. in 
output per worker.  
In either case, S2 is likely to be smaller if the population is confined to a particular category of 
units, such as farms of a particular type or establishments in a particular sector of the economy.  
 
 
 
Similar considerations apply to other populations in which units differ greatly in size or type.  
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In surveys of households, we often find that disparities in income are wider than those in 

household expenditure, and disparities in the latter in turn wider than those in expenditure on 

food. This is because, compared to richer people, poorer people often spend a greater part of 

their income (thus reducing differences in the amounts actually spent), and a grater share of 

that spending is on food.  

For any of these variables, population variance is likely to be smaller if the statistic is considered 

on a per capita rather than per household basis, or if the population is restricted to households 

of a particular size or composition. 
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Estimating population variance 

In practice, we need not only to estimate population parameters of interest (e.g. population 
mean �̅� from sample mean �̅�), but also to provide an estimate of the uncertainty to which this 
estimate is subject i.e. an estimate of Var(�̅�).  
 
How can the results of the one sample that is available be used to estimate the variability 
among results from all the possible samples which could have been drawn with the given 
design? 
  
Procedures exist for doing this with complex samples, but let us consider for the moment an 
SRS. 
From equation (6), its variance is given by estimating S2. Here is an important result of sampling 
theory: in simple random sampling an unbiased estimator of the population parameter S2 (Eq. 
3) is provided by the sample statistic 
𝑠2 = ∑ (𝑦𝑖 − �̅�)2

𝑖 (𝑛 − 1)⁄ .                                                                                         (7) 

That is, s2 averaged over all possible samples equals S2: E(s2)=S2, just as for this design 𝐸(�̅�) =

�̅�.  

Consequently, an unbiased estimate for SRS sampling variance, Var(�̅�), (Eq. 6), is provided by 

𝑉𝑎𝑟(�̅�) = (1 − 𝑓) ∙
𝑠2

𝑛
.                                                                                                  (8) 
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S
2 

for proportions  

For a proportion the expressions for S
2 

and s
2 

reduce to a very simple form and no elaborate 
computation is required. In general terms, a proportion implies that the population (of size N, 
say) is divided into only two categories: number N.P “yes's” and N.(1-P) “no's”. We can assign 
the value Yj=1 (say) to each of the former, and value Yj=0 to each of the latter. The proportion of 

“yes's” is then simply the mean of these values:  

�̅� =
𝑁∙𝑃 𝑜𝑛𝑒𝑠+𝑁∙(1−𝑃)𝑧𝑒𝑟𝑜𝑠

𝑁 𝑡𝑜𝑡𝑎𝑙 𝑐𝑎𝑠𝑒𝑠
=

𝑁∙𝑃

𝑁
= 𝑃,  

and the sum of squared deviations becomes 

∑ (𝑌𝑗 − �̅�)2 = (1 − 𝑃)2𝑁
𝑗=1      for N.P cases with 𝑌𝑗 = 1 

+(-P)2                                           for N.(1-P) cases with 𝑌𝑗 = 0 

 
       =N.P.(1-P)2+N.(1-P).(-P)2 =  N.P.(1-P) 
This gives  

𝑆2 =
𝑁

𝑁 − 1
∙ 𝑃(1 − 𝑃) ≈ 𝑃(1 − 𝑃) 

 
and similarly for its estimator  

              𝑠2 =
𝑛

𝑛−1
∙ 𝑝(1 − 𝑝) ≈ 𝑝(1 − 𝑝), if n is not small.  
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Departure from Simple Random Sampling  

 

The sample design may depart from simple random sampling in a number of ways, the three 

common and important ones being the following: 

 Clustering or multi-stage sampling, i.e. group the population elements into larger units 

(‘clusters’) 

 Stratification, i.e. partitioning the population before sample selection. 

 Unequal selection probabilities. 
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Numerical illustrations of the effect of clustering, stratification and weighting on the variance of 

sample estimates. 

Consider again the example used for SRS on a population of 8 elements. 

In fact with the SRS design, all combination of any given number s of elements, 1≤s≤n, are 

equally likely to appear in the sample. What clustering or stratification does is to suppress some 

of these possible samples, i.e. prevent particular combinations of elements from being selected. 

For instance, we may divide the population into two strata, the first consisting of units (1-4) and 

the second of units (5-8), and select two units from each part separately. Hence samples made 

up of units such as (1,2,3,6) or (2,5,6,8) which contain more than two units from any part, while 

possible under SRS design, are not allowed under this stratification.  

Similarly, the units may be clustered into groups such as (1,2),....,(7,8), and the selection done 

such that either no units or both units from any group appear in the sample. Hence samples like 

(1,3,4,6) or (1,2,6,8) which contain only one unit from any group, while possible under SRS 

design, are not allowed under this clustered design.  

Of course, we can also have the 'restrictions' of stratification and clustering applied 

simultaneously. 



18 
 

Example of Clustering  

Suppose that our 8 units are geographically located such that the two units in each pair (1+2), 

(3+4), (5+6) and (7+8) are close to each other.  

If the survey data are to be collected by actually visiting each sample unit, it may be cheaper 

and more convenient to select the sample such that if one unit in a pair is selected, then the 

other unit is also taken into the sample automatically. In other words, a sample of size 4 

elements is obtained by selecting 2 pre-defined clusters, each cluster containing 2 elements.  

In this way the amount of travel required for data collection may be reduced, and the data 

collection process better controlled. This is the positive side of using a clustered sample design.  

But what happens to the efficiency of the sample?  

For this we need to consider the sampling distribution of the design.  

The design is simply to select two of the four pairs listed above: pairs of original elements form 

our new ‘units’ for simple random sampling. There are only 6 possible samples. The remaining 

70 - 6=64 samples, of the possible 70 samples with a simple random sampling design, have 

been suppressed, but without affecting the probability nature of the sample.  
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Table  below shows the distribution of the sample means.  

Their overall average is the same as the population mean i.e., with this design as well, the 

sample mean provides an unbiased estimator of the population mean.  

However, compared to a SRS of elements, sampling variance is more than doubled (increased 

by a factor 1.67/0.75=2.2).  

Depending upon the practical circumstances in which the survey is conducted, this loss in 

efficiency may be more than compensated by the increased cost-efficiency, convenience, and 

possible improvement in the data quality; in which case, it is better to opt for the clustered 

design. Or the compensation may be inadequate; in which case it would have been better to 

stick with simple random sampling of elements. 
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Example of Stratification  

Suppose that we have prior knowledge that units in the first half of the population (units j=1-4) 

tend to have smaller Yj values than those in the second half (j=5-8). On the basis of this 

knowledge, we may divide the population into two parts, units (1,2,3,4) and units (5,6,7,8), and 

select a SRS of two units from each part separately. This is stratification.  

First consider element sampling (i.e. without clustering) within each stratum separately.  

Within each stratum we have six possible samples, giving a total of 6X6=36 full samples since 

each of the 6 in one part can be combined with any of the 6 in the second part. The remaining 

70 - 36=34 samples, possible under unstratified simple random sampling, have been suppressed 

by the stratified design. We can list all the 36 samples, but it is sufficient to consider the 6 

samples from each of the two strata. The overall mean is the average of the two strata means. 

The overall variance is half their average variance because the sample size is doubled when we 

put the two strata together. (Simple averaging suffices in the present example because the two 

strata are equal in the population and sample sizes.) The results are shown in Table below.  
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The population mean (4.5) is again estimated without bias. Variance is reduced with 

stratification by a factor 0.21/0.75=0.28 compared to SRS.  

This is because the units within each stratum are homogeneous (all small or all large).  

In determining the variability of the samples formed by pooling together the two strata, what 

matters is the variability within each stratum. With homogenous strata we are ensuring that 

always some small and some large units are selected, which tend to balance each other and the 

resulting overall sample values tend to move closer to the population values.  

With such stratification we suppress statistically ‘bad’ samples, i.e. samples with too many small 

or too many large units. 
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EFFECT OF CLUSTERING ON VARIANCE  

To illustrate some basic ideas, we consider the simple case of a single stage random sample of 

clusters of equal size.  

In place of selecting a simple random sample (srs) of n elements, the population of N elements is 

assumed as divided into A clusters each of size B=N/A, from which a=n/B clusters are selected 

with simple random sampling. All B elements in each selected cluster are taken into the sample, 

giving a sample of n=a.B elements.  

How does the efficiency of this sample compare with that of a sample where the same number 

of elements have been selected with simple random sampling?  

With yij as the value of a certain variable for element j in cluster i, the cluster mean and the overall 

mean per element are given by  

�̅�𝑖 = ∑ 𝑦𝑖𝑗𝑗 𝐵⁄   ;  �̅� = ∑ 𝑦𝑖𝑗𝑖𝑗 𝑎. 𝐵⁄ = ∑ �̅�𝑖𝑗 𝑎⁄  

What we have in fact is a srs of a cluster means, out of a population of A means. Hence the sample 

mean is an unbiased estimator of the population mean, and its variance is given by  

𝑆𝑎
2 =

∑ (�̅�𝑖−�̅� )2
𝑖

(𝐴−1)
; 𝑉𝑎𝑟(�̅�) = (1 −

𝑎

𝐴
) ∙

𝑆𝑎
2

𝑎
 

estimated by the sample values  

𝑠𝑎
2 =

∑ (�̅�𝑖−�̅� )2
𝑖

(𝑎−1)
; 𝑉𝑎𝑟(�̅�) = (1 −

𝑎

𝐴
) ∙

𝑠𝑎
2

𝑎
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EFFECT OF STRATIFICATION ON VARIANCE  

If sample selection and estimation is done separately within each stratum, the same basic 
expressions such as equations (1)-(8) above apply to each stratum. Using subscript h to refer to 
a particular stratum, we have with SRS within strata:  

𝑉𝑎𝑟(�̅�ℎ) = (1 − 𝑓ℎ) ∙
𝑆ℎ

2

𝑛ℎ
, with 𝑆ℎ

2 =
∑(𝑌ℎ𝑗−�̅�ℎ)2

𝑁ℎ−1
=

𝑁ℎ

𝑁ℎ−1
∙ 𝜎ℎ

2 

summed over Nh units in the stratum h, and estimated by  

𝑠ℎ
2 =

∑(𝑦ℎ𝑗−�̅�ℎ)2

𝑛ℎ−1
 summed over nh units in the sample from h.  

In putting together the results from different strata, we often do that in proportion to stratum 

size, e.g. Wh=Nh/N. For the total population �̅� = ∑ 𝑊ℎ ∙ �̅�ℎℎ  and if the Wh are known, �̅� =

∑ 𝑊ℎ ∙ �̅�ℎℎ  and 𝑉𝑎𝑟(�̅�) = ∑ 𝑊ℎ
2 ∙ 𝑉𝑎𝑟(�̅�ℎ)ℎ  
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The Horvitz-Thompson Estimator 
Under unequal probability sampling, the Horvitz-Thompson estimator (HT estimator) is an 
unbiased estimator of the population total. It is defined as 

�̂�𝐻𝑇 = ∑
𝑦𝑖

𝜋𝑖
𝑖∈𝑠

= ∑ 𝑤𝑖𝑦𝑖

𝑖∈𝑠

 

where wi is the design weight of the ith element as defined above. The HT estimator of the 
population mean can be expressed as 

�̂̅�𝐻𝑇 =
1

�̂�
∑

𝑦𝑖

𝜋𝑖
𝑖∈𝑠

=
1

�̂�
∑ 𝑤𝑖𝑦𝑖

𝑖∈𝑠

 

Where �̂� = ∑ 𝑤𝑖𝑖∈𝑠  is the estimated population size. 

𝑉𝑎𝑟(�̂�𝐻𝑇) = ∑
𝑦2

𝑖

𝜋𝑖
𝑖∈𝑠

(1 − 𝜋𝑖) + ∑ ∑
𝑦𝑖

𝜋𝑖
𝑗≠𝑖

𝑦𝑗

𝜋𝑗
𝑖∈𝑠

(𝜋𝑖𝑗 − 𝜋𝑖𝜋𝑗) 

and an unbiased estimator of this variance is 

𝑣𝑎𝑟(�̂�𝐻𝑇) = ∑
𝑦2

𝑖

𝜋2
𝑖

𝑖∈𝑠

(1 − 𝜋𝑖) + ∑ ∑
𝑦𝑖

𝜋𝑖
𝑗≠𝑖

𝑦𝑗

𝜋𝑗
𝑖∈𝑠

(𝜋𝑖𝑗 − 𝜋𝑖𝜋𝑗)

𝜋𝑖𝑗
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For a fixed-size sampling design the variance is just 

𝑉𝑎𝑟(�̂�𝐻𝑇) =
1

2
∑ ∑(𝜋𝑖𝜋𝑗−𝜋𝑖𝑗)

𝑗≠𝑖

(
𝑦𝑖

𝜋𝑖
−

𝑦𝑗

𝜋𝑗
)

2

𝑖∈𝑠

 

Under SRS without replacement the Horvitz-Thompson estimator for population total Y is: 

�̂�𝜋 =
𝑁

𝑛
∑ 𝑦𝑖

𝑖∈𝑠

 

The unbiased variance estimator of 𝑉𝑎𝑟(�̂�𝜋) is given by 

𝑉𝑎𝑟(�̂�𝜋) = 𝑁2(1 − 𝑓)
𝑠2

𝑁
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Example1.  
Consider a very small population U consisting of N = 3 elements 

y1 = 70 y2 = 60 y3 = 80 
and we conduct a simple random sampling without replacement of size n = 2. 

s P(s) �̅�(𝑠) 
{1,2} 1

3
 

65 

{1,3} 1

3
 

75 

{2,2} 1

3
 

70 

 

The inclusion probability 𝑃(1 ∈ 𝑠) =
1

3
+

1

3
=

2

3
=

𝑛

𝑁
 

 

𝐸(�̅�) = ∑ 𝑃(𝑠)�̅�(𝑠)

∀𝑠

=
1

3
∙ 65 +

1

3
∙ 75 +

1

3
∙ 70 = 70 

𝑉𝑎𝑟(�̅�) = 𝐸(�̅�2) − [𝐸(�̅�)]2 =
1

3
∙ 652 +

1

3
∙ 752 +

1

3
∙ 702 − 702 =

50

3
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Example2.  
Lets consider now a population 𝑈 = {1,2,3,4} of dimension N=4. If we consider SRS without 
replacement of dimension n=3, 𝑆 = {(1,2,3), (1,2,4), (1,3,4), (2,3,4)}. The sampling probability 
of each sample are the following: 

s p(s) 
(1,2,3) 0.15 

(1,2,4) 0.35 
(1,3,4) 0.30 
(2,3,4) 0.20 

 1 
First order inclusion probabilities for each unit are: 

i 1 2 3 4 
𝜋𝑖 0.80 0.70 0.65 0.85 

Suppose that the interest variable assume the following values: 
i Yi 𝜋𝑖 

1 50 0.80 
2 32 0.70 

3 48 0.65 
4 65 0.85 
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�̅� =
50 + 32 + 48 + 65

4
= 48.75 

 
For the first sample = {1,2,3} , the units are (50, 32, 48), so 

�̂̅� =
1

4
(

50

0.80
+

32

0.70
+

48

0.65
) = 45.51 

 

The sample mean �̅� =
50+32+48

3
= 43.33 

For all the 4 sample we have 

s Yi �̂̅� �̅� P(s) 

(1,2,3) (50,32,48) 45.51 43.33 0.15 
(1,2,4) (50,32,65) 46.17 49.00 0.35 
(2,3,4) (32,48,65) 49.01 48.33 0.20 

(1,3,4) (50,48,65) 53.20 54.33 0.30 
 

E(�̂̅�)=45.51x0.15+46.17x0.35+49.01x0.20+53.20x0.30=48.75 

V(�̂̅�)=MSE(�̂̅�)=(45.51-48.75)2x0.15+…+(53.20-48.75)2x0.30=9.85 

E(�̅�)=43.33x0.15+49.00x0.35+48.33x0.20+54.33x0.30=49.62≠48.75 

MSE(�̅�)=(43.33-48.75)2x0.15+…+(54.33-48.75)2x0.30=13.81 
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PRACTICAL PROCEDURES FOR COMPUTING SAMPLING ERRORS  
Large scale household surveys are generally based on multi-stage, stratified and otherwise 
complex designs. A typical survey is multi-purpose in several respects: it involves many types of 
interrelated variables; many types of estimates such as proportions, means, ratios and 
differences of ratios; various types of units of analysis such as households and individuals; 
various levels of dis-aggregation of the sample; and diverse and numerous subclasses 
(subpopulations) for which estimates of levels, differences and other relationships are required.  
Practical procedures for estimating sampling errors therefore:  
(1) must take into account the actual, complex structure of the design;  
(2) should be flexible enough to be applicable to diverse designs;  
(3) should be suitable and convenient for large-scale application, and for producing results for 

diverse statistics and subclasses;  
(4) should be robust against departure of the design in practice from the ideal `model' 

assumed in the computation method;  
(5) should have desirable statistical properties such as small mean-squared error of the 

variance estimator;  
(6) should be economical in terms of the effort and cost involved; and  
(7) suitable computer software should be available for application of the method.  
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The theory of ‘simple replicated variance estimators’  
The theory of 'simple replicated variance estimators' provides the basis for most practical 

approaches to variance estimation, though in application to complex situations, additional 

assumptions and approximations may be involved.  

The basic theory may be stated as follows. Suppose that yj are a set of random uncorrelated 

variables with a common expectation Y. Then the mean  y~ of n values yj /ny = y
jj

~  has an 

expected value equal to Y, and its variance is given by /ns = )y~var( 2 , where 1)-/(n)y~-y( = s 
2

jj
2

 . 

The most obvious example of the above is a simple random sample (srs) of elements selected 

with replacement, where yj represent values of a certain variable for individual elements j.  

The same idea can be applied to the more general situation when "j" refers not to individual 

elements but to any set of elements uncorrelated to others in the sample, and " yj " to any 

complex statistic defined for each set j.  

The requirement is that the yj are uncorrelated and have a common expectation.  

In practice this means that the sets should be selected and observed independently, following 

the same selection, measurement and estimation procedures. 
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Drawing on this basic idea, two broad practical approaches to the computation of sampling 
errors may be identified:  
1) Computation from comparisons among estimates for replications of the sample, each of 
which reflects the structure of the full sample, including its clustering and stratification. 
2) Computation from comparisons among certain aggregates for primary selections or 
replicates within each stratum of the sample, also known as linearization method. 
The first method is simpler and computationally faster; it is normally used when applicable. 
There can, however be more complex situations – more complex sample designs, more 
complex statistics – which may require the second type of method, comparison among sample 
replications. 
The Jack-knife Repeated Replication is a commonly used method which belongs to class (1). This 
is the method adopted and developed for application in EU-SILC at the EU level and also in 
countries that choose to use it. 
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The idea of replication techniques 
JRR is one of the class of practical methods for variance estimation in complex samples based 
on measures of observed variability among replications of the full sample. The basic 
requirement is that the full sample is composed of a number of subsamples or replications, 
each with the same design and reflecting complexity of the full sample, enumerated using the 
same procedures 
A replication differs from the full sample only in size. But its own size should be large enough for 
it to reflect the structure of the full sample, and for any estimate based on a single replication 
to be close to the corresponding estimate based on the full sample. At the same time, the 
number of replications available should be large enough so that comparison among replications 
gives a stable estimate of the sampling variability in practice.  
With JRR, a replication is formed by dropping a small part of the total sample, such as a single 
PSU in one stratum; consequently each replication measures the contribution of a small part 
such as a single stratum. 
The various re-sampling procedures available differ in the manner in which replications are 
generated from the parent sample and the corresponding variance estimation formulae evoked 
(such as the Balanced Repeated Replication (BRR) and the bootstrap, apart from JRR). 
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Initial formulae of JRR 
Briefly, the standard JRR involves the following. 

Let z be a full-sample estimate of any complexity, and z(hi) be the estimate produced using the 

same procedure after eliminating primary unit i in stratum h and increasing the weight of the 

remaining (ah-1) units in the stratum by an appropriate factor gh (see below). Let z(h) be the simple 

average of the z(hi) over the ah sample units in h. The variance of z is then estimated as: 

         2

hhiihhh zz.g.f1zvar  . 
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Improvements of initial formulae 

Originally, the factor gh was taken as  1aag hhh  , recently, it has been proposed to use 
 hihhh wwwg  , where hijjhihiih ww,ww  , the sum of sample weights of ultimate units j 

in primary selection i. The latter form retains the total weight of the included sample cases 

unchanged across the replications created. With the sample weights scaled such that their sum 

is equal (or proportional) to some external more reliable population total, population aggregates 

from the sample can be estimated more efficiently, often with the same precision as proportions 

or means. 
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The design effect – deft 
The design effect is defined as the ratio of the variance under the given sample design, to the 

variance under a simple random sample of the same size: deftsese R   

Proceeding from estimates of sampling error to estimates of design effects (ratio of actual 

sampling error to that under equivalent simple random sampling, SRS) is essential for 

understanding the patterns of variation in and the determinants of magnitude of the error, for 

smoothing and extrapolating the results for diverse statistics and population subclasses, and for 

evaluating the performance of the sampling design. 
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Components of the design effect 
Computing design effects requires the additional step of estimating sampling errors under simple 

random sampling.  

Design effect itself can be decomposed into at least two components. 

(1) the effect of sample weights on variance 

(2) the effect of clustering, stratification and aspects other than weighting 

 

The first component of the design effect (known as the Kish effect, or effect of the weights) could 

be directly calculated by the data.  

For the second component, it is required to ‘randomise’ the data set and apply the JRR procedure, 

as follows: 

21 deftdeftsese SRSJRR   

1deftsese SRSJRRRAND
  

1

21
2

deftse

deftdeftse

se

se
deft

SRS

SRS

JRR

JRR

RAND
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Factor (deft1) does not depend on the structure of the sample, other than the presence of 
unequal sample weights for the elementary units of analysis. The main effect is the variability of 
these weights in the sample. The effect is also influenced by the extent to which the variable 
being estimated is correlated with the sample weights.  

 
 

The weights are introduced in the sample to let the estimates be statistically unbiased. They are 
introduced in successive steps: 
• Inversely to probability of selection 
• For non response 
• For the so-called ‘calibration’ 
• Other steps are present in longitudinal surveys such as SILC 
• To reduce the effect of weighting (reduce deft1) it is applied the so-called ‘trimming’ 
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Practical aspects 
In order to apply the JRR technique (and any other resampling technique) it is important to 
clarify two practical aspects: 

- Explicit and implicit stratification and computational strata 
- Computational PSU (Primary Selection Units) 

In many practical situations some aspects of sample structure need to be redefined to make 

variance computation possible, efficient and stable. Of course, any such redefinition is 

appropriate only if it does not introduce significant bias in variance estimation. The 

computational structure can differ from the actual sample structure because of various 

consideration such as the following. 
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Firstly, it is often necessary to define computational strata and PSUs to meet the basic 

requirement of practical methods of variance estimation for complex samples. Here are some 

common situations. 

1. It may be necessary to regroup (‘collapse’) strata so as to ensure that each stratum has at 

least two sample PSUs – the minimum number required for the computation of variance. 

2. Units which are included into the sample automatically (‘self-representing units’) are in fact 

strata rather than PSUs, and computational PSUs have to be defined at a lower stage within 

each such unit. 

3. In samples selected systematically, the implied implicit stratification is often used to define 

explicit strata, from each of which an independent sample is supposed to have been selected. 

Such strata have to be formed by pairing or otherwise grouping of PSUs in the order of their 

selection from the systematic list, ensuring that each resulting computational stratum has at 

least two primary selections. 

4. Sometimes non-response can result in the disappearance from the sample of whole PSUs. 

This can disturb the structure of the sample, such as leaving fewer than two PSUs in some 

strata. Variance computation requires some redefinition of the computational units to meet the 

basic requirement of having at least 2 PSUs per stratum. 
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5. The above-mentioned problem arises more frequently and seriously when computing 

sampling errors for subclasses (subpopulations). The risk can be reduced by aggregating PSUs 

and strata to create fewer, larger computational units. 

Considerations such as the above apply equally irrespective of whether the JRR, Linearisation or 
some other form of variance computation algorithm is used. 
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Concluding Remark: Importance of information on sampling errors 

While survey data are subject to errors from diverse sources, information on sampling errors is 

of crucial importance in proper interpretation of the survey results, and in rational design of 

sample surveys.  

Of course, sampling error is only one component of the total error in survey estimates, and not 

always the most important component.  

By the same token, it is the lower (and more easily estimated) bound of the total error: a survey 

will be useless if this component alone becomes too large for the survey results to add useful 

information with any measure of confidence to what is already known prior to the survey.  
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Furthermore, survey estimates are typically required not only for the whole population but also 

separately for many subgroups in the population.  

Generally the relative magnitude of sampling error vis a vis other types of errors increases as 

we move from estimates for the total population to estimates for individual subgroups and 

comparison between subgroups.  

Information on the magnitude of sampling errors is therefore essential in deciding the degree 

of detail with which the survey data may be meaningfully tabulated and analysed.  

Similarly, sampling error information is needed for sample design and evaluation.  

While the design is also determined by many other considerations (such as costs, availability of 

sampling frames, the need to control measurement errors), rational decisions on the choice of 

sample size, allocation, clustering, stratification, estimation procedures etc. can only be made 

on the basis of detailed knowledge of their effect on the magnitude of sampling errors of 

statistics obtained from the survey.  

Various practical methods and computer software have been developed for computing 
sampling errors, and there is no justification in most situations for the continued failure to 
include information on sampling errors in the presentation of survey results. 
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