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 Topic 2: Traditional GREG and calibration methods 

 Topic 3: Extensions 

 Topic 4: CASE STUDY: Perceived income for regional 

domains in Finland 

 ANNEX Notation and inferential principles 
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Topic 1: Preliminaries 

 Important EC regulated surveys by NSIs 

 LFS 

 SILC Quality reports 

 HBS 

 

 Others 

 European Social Survey (academy-driven) 

 PISA survey (OECD) 

 

 What might be the common properties of these 
types of surveys? 
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European sample surveys – 1 

 Some properties 
 

 Surveys are implemented in different statistical data 
infrastructures: survey-driven, register-driven 

 

 Multi-stage probability sampling designs are often used 
 Stratification, clustering, unequal probability sampling 
Proper analysis requires methods to account for 

sampling complexities 
 

 Observed data are contaminated by non-sampling errors 
 Nonresponse, measurement errors 
Methods are needed to account for data contamination 

 

 Published statistics are under high precision requirements, 
also for domain and small area estimates 
Methods are needed to reduce standard errors 
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European sample surveys – 2 

 Weighting and reweighting 

 In a probability-based survey, a design weight is associated 
with each sampled unit 

 The design weight can be interpreted as the number of 
typical units in the survey population that each sampled 
units represents 

 Estimates can be calculated using the design weights or 
estimation weights obtained by adjusting the design weights 

 Common adjustments include those that account for 
nonresponse and that incorporate auxiliary information 
 

 Statistics Canada Quality Guidelines 
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European sample surveys – 3 

 Weighting  

 Accounting for stratification and unequal probability 
sampling with design weight 

 Design weight = inverse of inclusion probability 

 Reweighting for nonresponse 

 Adjusting for selection bias caused by unit nonresponse 
 Lundström & Särndal (2005) Estimation in Surveys with Nonresponse. 

New York. Wiley  

 Reweighting to improve precision of estimates 

 Calibration and generalized regression estimation, 
adapted for the estimation for domains and small areas 

 This is the topic of this mini course 
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Estimation for domains 

 The estimation of quantities for population subgroups  
called domains (small or large) 

 Total number of people in poverty for counties (SILC data)  

 Mean disposable income by municipality (SILC data) 

 Proportion of ILO unemployed in sex-age groups within 
provinces (LFS data) 
 

• Small area estimation, SAE 

• Estimation for domains whose sample size is small  
or very small (even zero) 

• Alternative definition: 

 Small area = Domain of interest for which the sample size 
is not adequate to produce reliable direct estimates 
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Poverty map: Estonia  
World Bank 2014 – Regional poverty rates based on SILC data 
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Estimation for domains: Important aspects 

 Type of domains of interest 
 Planned domains  /  Unplanned domains 

 

 Type of domain estimator 
 Direct estimator  /  Indirect estimator 

 

 Availability of auxiliary (population) data 
 Unit-level  /  Aggregate-level (area-level) 
 Sources: Census, Admin. registers, Statistical registers  

 

 Type of model 
 Linear models/ Generalized linear models 
 Fixed-effects models  /  Mixed models 

 

 Accuracy measures 
 Variance estimators  /  MSE estimators 

 

 Computation tools 
 R (packages survey and sae), SAS (SURVEY procedures) 
 R package ReGenesees (ISTAT) 
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Two main domain structures 

• Planned domains 

• Most important domains are defined as strata 

• Strata are independent sub-populations 

• Domain sample sizes can be fixed in advance 

• Domain sample sizes are controlled by allocation scheme 

• Small sample sizes can be avoided if desired 
 

• Unplanned domains 

• Domain sample sizes are not fixed but are random 

• Small domain sample sizes can occur 

• Most common case in small area estimation practice 
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Direct and indirect estimator 

• Direct estimator for domains 

• Direct domain estimator uses values of the variable of 
interest y only from the time period of interest and only 
from units in the domain of interest  
(Federal Committee on Statistical Methodology, 1993) 

• Often in connection to planned domain structures 
 

• Indirect estimator for domains 

• Indirect domain estimator uses values of the variable of 
interest y from a domain and/or time period other than 
the domain and time period of interest 

• Often in connection to unplanned domain structures 
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Domain type and estimator type 
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Domain type Estimator type 

Direct Indirect 

 
Planned 
 

 

Typical  
set-up 

 
More rarely 

 
Unplanned 
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Typical  
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“Borrow strength” 

 Indirect estimators are attempting to “borrow strength” 
from other (similar) domains and/or in a temporal 
dimension 
 

 For domains with small sample sizes, this is a well justified 
goal – Why?     
 

 The concept of “borrowing strength” is often used in model-
based small area estimation 
 Jon Rao (2015) 

 

 Borrowing strength also is possible for design-based model 
assisted estimators 
 Lehtonen & Veijanen (2009) 

 
 

 NOTE: Principles of design-based and model-based 
inference are summarized (very briefly) in ANNEX 
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Key properties of estimators 
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 EXAMPLE. Lehtonen, R., Särndal, C.-E. and Veijanen, A. (2005): Does the model 
 matter? Comparing model-assisted and model-dependent estimators of class 
 frequencies for domains. Statistics in Transition 7, 649-673. 
 

  

 
FIGURE 1 Distribution of relative error (%) of design-based MLGREG (left-hand side) and model-
based MLSYN (right-hand side) estimators in domain 31 of the generated LFS population. (Design-
based simulation experiment, 1,000 independent simple random samples of 12,000 elements from 
population of three million elements and 84 domains) 
 

Relative error of an estimator ˆ
dt  for sample , 1,...,1000is i  , in domain d is defined as  

ˆ ˆRE( ) ( ( ) ) /d d i d dt t s t t  , 1,...,84d   



Discussion 

 Previous example: 

 

 MLGREG: design-based generalized regression (GREG) 
estimator assisted by logistic mixed model 

 MLSYN: model-based synthetic estimator with the same 
underlying logistic mixed model formulation as GREG 

 

 Which one is: 

 Design unbiased? 

 More accurate? 

 

 NOTE: Trade-off between bias and accuracy! 
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Topic 2: Traditional GREG and 
calibration methods 

 Generalized regression (GREG) estimators and 
calibration methods provide design-based methods for 
the estimation of population and sub-population parameters 

 GREG and calibration estimators are (approximately) 
design unbiased 

 Estimation of precision (variance and standard error) of 
estimators is straightforward 

 Basic goal: Improvement of precision over “standard” 
methods (e.g. Horvitz-Thompson (HT) estimator) by 
incorporating auxiliary data in the estimation procedure 

 GREG and calibration methods are extensively used in 
official statistics (e.g. Statistics Finland and  ISTAT) 

 Särndal, Swensson & Wretman (1992) 

 Deville & Särndal (1992)  
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Extended GREG family  

 Traditional GREG estimators (Särndal et al.) are designed 
for population total of continuous study variable 

 Assisting models: Linear fixed-effects models 

 Therefore, this GREG is called linear GREG estimator 

 Auxiliary data: Population totals of auxiliary variables 

 Examples: Regression estimation, ratio estimation and post-
stratification for totals of continuous study variable 
 

 Extended family of GREG estimators is designed for 
population cell frequencies or totals of binary, polytomous 
and count variables 

 Assisting models: Generalized linear mixed models (GLMMs) 

 Auxiliary data: Values of auxiliary variables at the unit level for 
all population elements 

 Example: Logistic GREG estimator for population frequencies 
of polytomous study variable (Lehtonen & Veijanen (1998) 

20 



NOTE on auxiliary data 

 “Survey” countries 
 Auxiliary data are often available at aggregate level 

(population totals and frequency distributions) 

 Sample survey data and auxiliary data cannot be merged at 
the unit level 

 “Register” countries 
 Auxiliary data from statistical registers are available at the unit 

level (values of auxiliary variables for all population elements) 
and can be micro-merged with sample survey data by using 
identification keys  

 This option involves more flexible estimation than for “survey” 
countries 
 

 Many countries in Europe and elsewhere have developed, or 
are turning towards, register-driven data infrastructures 
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Traditional linear GREG estimator 

 GREG = Generalized regression estimator 

 

 Robinson P.M. and Särndal C.-E. (1983) Asymptotic 
properties of the generalized regression estimator in 
probability sampling, Sankhyā Ser. B, 45, 240–248. 

 

 Särndal, C.E. (1980) On π-inverse weighting versus best 
linear unbiased weighting in probability sampling. 
Biometrika 67, 639–650. 

 

 Särndal C.-E., Swensson B. and Wretman J. (1992) Model-
Assisted Survey Sampling. New York: Springer. 
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GREG principle - 1 
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GREG principle - 2 
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GREG principle - 3 
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NOTES on GREG 

 Linear GREG estimators are called model assisted because 
models are explicitly specified and used as assisting tools in 
incorporating auxiliary x-data in the estimation process 

 Even finding a good model for y-variable is important for 
efficiency improvement, the interest is not in the model 
itself but in the target indicator (total in this case) 

 NOTE: Models can involve several x-variables 
 

 Expected gain in GREG estimation: 

 Improved efficiency (decrease of standard error relative to 
Horvitz-Thompson estimator) if y-variable and x-variable 
are correlated 
 

 NOTE: In addition to efficiency improvement GREG is often 
used in adjusting for unit nonresponse 
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Traditional calibration estimator 

 Calibration estimators 

 

 Deville, J.-C. and Särndal, C.-E. (1992). Calibration 
estimators in survey sampling. JASA 87, 376–382. 
 

 Estevao V.M. and Särndal C.-E. (1999) The use of auxiliary 
information in design-based estimation for domains. Survey 
Methodology  2, 213-221. 
 

 Särndal C.-E. (2007) The calibration approach in survey 

theory and practice. Survey Methodology 33, 99–119. 
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Calibration principle 
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NOTES on calibration 

 Traditional calibration (Deville & Särndal 1992) is called 
model-free calibration because models are not explicitly 
specified to obtain calibration weights 

 Only x-data are needed (both in sample and in population) 

 NOTE: Calibration can involve several x-variables 

 NOTE: In model calibration, models are used explicitly  
 

 Expected gains in calibration: 

 Calibration property: Coherence of sample estimates of x-
variable totals with known population totals 

 Improved efficiency (decrease of standard error relative to 
Horvitz-Thompson estimator) if y-variable and x-variable 
are correlated 
 

 NOTE: Calibration can be used for nonresponse adjustment 
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RECALL: Direct and indirect estimators 
for domains 

• Direct estimation 

• Direct domain estimator uses values of the variable of 
interest y only from the time period of interest and only 
from units in the domain of interest  
(Federal Committee on Statistical Methodology, 1993) 

• Often in connection to planned domain structures 
 

• Indirect estimation 

• Indirect domain estimator uses values of the variable of 
interest y from a domain and/or time period other than 
the domain and time period of interest 

• Often in connection to unplanned domain structures 
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IMPORTANT NOTE 

 Planned domains 

 Domains of interest coincide with the strata 

 Domain sample sizes are fixed in the sampling design 

 In estimation for domains, the domains of interest can be 

treated as independent sub-populations 

 Standard GREG and calibration estimators for the whole 

population can be applied separately for each domain 

 

 Unplanned domains 

 A single sample is drawn from population 

 Domain sample sizes are not under control but are random 

 Both small and large domain sample sizes can realize 

 Additional methods must be introduced to account for these 

complexities 
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SIMPLE EXAMPLE: Ratio-type GREG 
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a) Direct GREG estimator for domains 

33 

Assisting model: ,   ,  1,...,

ˆ
ˆ ˆˆBy noting that  and  we have:

ˆ

ˆ ˆ ˆ    ( )

ˆ
ˆ ˆ          ( )

ˆ

ˆ
           

ˆ

d d

k d k k d

dHT
d k d k

dxHT

dRAT k k k k

k U k s

dHT
dHT dx dxHT

dxHT

dHT
dx

dxHT

y x k U d D

t
y x

t

t y a y y

t
t t t

t

t
t

t

 

 

 

   

 

  

  

 

 

, 1,...,

which is standard textbook form of 

Why this GREG estimator is direct?

NOTE: Auxiliary information needed: x-totals   for domainsdx

d D

ratio estimator

t





b) Indirect GREG estimator for domains 

34 

Assisting model: ,   

ˆ
ˆ ˆˆBy noting that  and  we have

ˆ

ˆ ˆ ˆ    ( )

ˆ
ˆ ˆ          ( )

ˆ

which is standard textbook form of 

d d

k k k

HT
k k

xHT

dRAT k k k k

k U k s

HT
dHT dx dxHT

xHT

y x k U

t
y x

t

t y a y y

t
t t t

t

regression e

 

 

 

  

 

  

  

 

 

using aggregate auxiliary information 

Why this GREG estimator is indirect?
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Simple example 

 Hypothetical example in estimation of domain totals  

 Demonstration of direct and indirect GREG estimators a) 

and b) and comparison with Horvitz-Thompson (HT) 

estimator 
 

 Population: N=966 units, sample: n=100 

 Sampling with simple random sampling without 

replacement (SRSWOR) 
 

 Planned domains: domains are taken as strata and a 

sample is drawn from each stratum with proportional 

allocation such that the total sample size n=100 

 Unplanned domains:  A single sample of n=100 is drawn 
 

 Study variable y, explanatory (auxiliary) variable x 

 Correlation cor(y,x)=0.83  

 Varies between domains: range 0.15 to 0.96 
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Results (sorted by domain sample size) 
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d
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All   966 100     

 



Indirect GREG estimator for domains - 1 
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Indirect GREG estimator for domains - 2 
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Some notes on efficiency 

 The model is not domain specific but is specified for the 

whole population 

 This means borrowing strength for given (possibly small) 

domain from other “similar” (possibly larger) domains 

 Efficiency improves if explanatory power of x-variables in 

the model is good involving small residuals 
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Examples of assisting models 
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GREG as calibration estimator 

41 

Indirect GREG  can be written as a weighted sum of observations 

incorporating  (g-w

ˆ                                                 

whe

eights) :

d d

k k dk

dGREG k k k dk kk s k s

w a gcalibr

t w y a g

ated weigh

y

ts

 



  

  1

is domain membership indicator

   suc

ˆˆre   are  g-weights

   { } 

1 if ,  0 otherwise

ˆ     NOTE: Extends over the whole sample 

NOTE: 

h that 

dk dk dx dx k

dk d

dk d

i i ii s

g I extended

I I k U

I k U

a s






  

 

 



t t M x

M x x

Cali holds for all x-variables ,  1,..., :

ˆ                     
j jd d

j

dx GREG k dk jk jk dxk s k U

x j J

t a g x x t
 



   

bration property 



Variance estimator of indirect GREG with  
g-weights 
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 

  1

ˆ ˆ    ( )

ˆwhere  are sample residua

Extended g-weights  are used 

The whole

ls

ˆ ˆˆ     with 

 sample data set  is used to esti

dGREG k l kl dk k dl l

k s l s

k k k

dk dk dx dx k i i ii s

dk

V t a a a g e g e

e y y

g

s

I a

g

 





 

 


   



t t M x M x x

 ˆ ˆNOTE:  requires weights 1/  

where  are second-order inclusion probabilities

They are intractable for practical variance esti

mate variance

f

matio

or given domain 

n

dGREG kl kl

kl

V a

d

t 







More practical variance estimator 
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Approximate variance estimator of GREG  

by using extended residuals: 

    
2

ˆ ˆ ˆ /
1

U dGREG k dk dHTe

k s

n
V t a e t n

n 

 

  

where  n is the total sample size and 1/k ka   (design weights) 

   { }dk d ke I k U e    are extended residuals, where ˆ
k k ke y y   

NOTE:  if  and 0 if dk k d dk de e k s e k s     

   ˆ
d

dHTe k kk s
t a e


   is HT estimator of residual total in domain d 

NOTE: This form resembles variance estimator for PPSWR  

and is used in some software (e.g. RDomest software) 



Indirect GREG – textbook form 
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Since assisting model in traditional GREG estimator is 
linear, GREG estimation does not require unit-level 

information on kx  

It is enough to have access to the vector 
d

dx kk U
t x   

of domain totals of auxiliary x-variables in the population 

and the corresponding HT estimates ˆ
d

dx kk s
t x  in the 

sample 
 

Standard textbook form: 

     ˆˆ ˆ ˆ
dGREG dHT dx dxt t


  t t β , where ˆ

d
dHT k kk s

t a y


  

 



EXAMPLE: GREG estimation for 
domains with real data 

 Lehtonen R. and Veijanen A. (2009). Design-based 
methods of estimation for domains and small areas. 
Chapter 31 in Rao C.R. and Pfeffermann D. (Eds.). 
Handbook of Statistics. Sample Surveys: Inference and 
Analysis. Vol. 29B. New York: Elsevier. 
 

 Section 4.2. Computational example with direct and indirect 
estimation under an unplanned domain structure 

 

 Summary leaflet: Comparison of results of direct HT 
estimator with direct GREG and indirect GREG estimators 
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../Materials/Summary_Examples.pdf


Data 

 Real data from statistical registers of Statistics 
Finland 
 

 Population: N = 431,000 households from Western Finland 

 Domains: D = 12 NUTS4 regions (domains) 

 

 Household sampling: πPS (PPS-WOR) 

 Size variable in PPS-WOR: Number of household members 
(obtained from statistical register) 

 

 Sample size: n = 1000 households 
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Finland  
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Variables 

 Study variable y 

 Disposable household income 

 Auxiliary x-variables (known for all HHs) 

 EMP: the number of months in total the household 
members were employed during last year 

• EDUC: the number of household members who had 
higher education 

 Variables are derived from administrative registers 

 Domain sizes in population and domain totals of EMP 
and EDUC are assumed known 
 

 NOTE: We have access to population values of our study 
variable y and auxiliary x-variables 

 This gives option to compare results with true values 
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Quality measures of estimators 
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ARE Absolute relative error of an estimator ˆ
dt  in domain d  

 

    ˆ ˆARE( ) | | /
d d d d

t t t t  , d = 1,...,D 
 

where 
dt  is known true total 

MARE: Mean ARE calculated in three domain size classes  
 

MCV Mean coefficient of variation of the estimate in three 
domain size classes 
 

Coefficient of variation is calculated as  

    ˆ ˆ ˆ( ) . ( ) /d d dCV t s e t t  



Estimators of domain totals 
a) Direct GREG for planned domains 

 HT estimator and variance estimators 

 Direct GREG estimator and variance estimators 
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   

 

   

2

2

Parameter: Domain totals ,  1,...,12

ˆ

1ˆ ˆ ˆ
( 1)

ˆˆ ˆ ˆ

1ˆ ˆ ˆ
( 1)

d

d

d

d

d kk U

dHT k kk s

A dHT d k k dHT

k sd d

dGREG dHT dx dx d

A dGREG d k k dHTe

k sd d

t y d

t a y

V t n a y t
n n

t t

V t n a e t
n n









 



 



  

 










t t β



Assisting models in GREG 
Planned domains 
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Direct GREG estimator with linear fixed-effects 
assisting model and domain-specific terms 
 

0 1 EMPk d d k ky       (column 2), or 

0 1 2EMP EDUCk d d k d k ky         (column 3) 

 
NOTE: Domain-specific intercepts and slopes 
 
Therefore, this GREG is direct 
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Table 2. Mean absolute relative error MARE (%) and mean coefficient of 
variation MCV (%) of direct HT and direct calibration (GREG) estimators  
of totals for minor, medium-sized and major domains by using various 
amounts of auxiliary information for planned domains. 
 

 
 
 
 

HT GREG 

Auxiliary information 

1 
None 

2 
Domain sizes 

and 
domain totals 

of EMP  

3 
Domain sizes 
and domain 

totals of EMP 
and EDUC 

Domain 
sample size 

class 

 
MARE 

% 

 
MCV 

% 

 
MARE 

% 

 
MCV 

% 

 
MARE 

% 

 
MCV 

% 

Minor 

8 33dn   
 

11.5 
 

11.9 
 

5.8 
 

7.7 
 

6.4 
 

6.8 
Medium 

34 45dn   
 

7.6 
 

9.0 
 

3.7 
 

8.0 
 

3.6 
 

8.1 
Major 

46 277dn   
 

12.5 
 

5.2 
 

4.3 
 

4.7 
 

5.2 
 

3.7 
 
 



Estimators of domain totals 
b) Indirect GREG for unplanned domains 

 HT estimator and variance estimators 

 Indirect GREG estimator and variance estimators 
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   

 

   

2

2

Parameter: Domain totals ,  1,...,12

ˆ

ˆ ˆ ˆ /  
1

ˆˆ ˆ ˆ

ˆ ˆ ˆ /
1

d

d

d kk U

dHT k kk s

U dHT k dk dHT

k s

dGREG dHT dx dx

U dGREG k dk dHTe

k s

t y d

t a y

n
V t a y t n

n

t t

n
V t a e t n

n









 



 



  

 










t t β



Assisting models in GREG 
Unplanned domains 
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Indirect GREG estimator is assisted by a linear 
fixed-effects model 
 

   
0 1EMPk k ky        

 

fitted to the whole sample 
 

NOTE: Common intercept and slope for all 
domains  
 
Therefore, this GREG is indirect 
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Table 3. Mean absolute relative error MARE (%) and mean coefficient of 
variation MCV (%) of HT and indirect GREG estimators of totals for minor, 
medium-sized and major domains for unplanned domains. 
 

 
 
 
 

HT GREG 

Auxiliary information  

1 
None 

2 
Domain sizes  
and domain  

totals of EMP 

Domain  
sample size  

class 

 
MARE 

% 

 
MCV 

% 

 
MARE 

% 

 
MCV 

% 

Minor 
8 33dn   

 
11.5 

 
28.3 

 
7.6 

 
9.0 

Medium 
34 45dn   

 
7.6 

 
20.3 

 
3.8 

 
8.1 

Major 
46 277dn   

 
12.5 

 
9.6 

 
4.1 

 
5.0 

 
 



Lessons learned from examples  
a) and b) 

 Planned domains, direct estimators 

 GREG better than HT in terms of accuracy 

 Unplanned domains, indirect estimators 

 GREG again better than HT in terms of accuracy 

 Use of auxiliary data makes sense! 

 Planned vs. unplanned case 

 For both HT and GREG, accuracy tends to be better in 
planned domains case 

 Stratification for important domains of interest makes 
sense! This is an issue of the survey planning stage! 

 However, the unplanned case and indirect methods are 
much more common in practice  
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TOPIC 3: Extensions 

 Traditional linear GREG and model-free calibration methods 
use linear fixed-effects models for continuous study variables 
 

 More general model families are needed to cover binary, 
polytomous and count type study variables  
 

 Generalized linear (fixed-effects) models (GLM) 
Nelder & Wedderburn (1972) JRSS-A 
McCullagh & Nelder (1982) Generalized Linear Models. Springer. 
 

 Generalized linear mixed models (GLMM) family models 
Demidenko (2005) Mixed Models: Theory and Applications. Wiley.  
 

 These model types are used in extended family of GREG 
estimators for domains and model calibration estimators for 
domains 

57 



EXAMPLE: Assisting model in GREG and 
model calibration - 1 
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1 0 1

2 2

for continuous study variable 

     + , , 1,...,

where  (1, ,..., ) ,    ( , ,..., )  

 are domain-level random intercepts 

~ (0, ),   ~ (0, ),  

k k d k d

k k pk p

d

d u k

y

y u k U d D

x x

u

u N N u



  

  

   

  

Linear mixed model 

x β

x β

2

 and  independent

Estimate  

ˆ , 1,...,  and calculate fitted values    

ˆˆ ˆ    ,   , 1,...,  

Used in linear mixed model assisted GREG e

and   from the data

Calculate estimate

s

s   

ti

d k

u

d

k k d d

u d D

y u k U d D







   

β

x β

mator (MGREG)

(Lehtonen, Särndal and Veijanen (2003)



EXAMPLE: Assisting model in GREG and 
model calibration - 2 
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for binary response variable 

exp( )
   ( )  

1 exp( )

Estimate  

ˆexp( )
ˆCalculate fitted values   ,    

ˆ1 exp( )

Used in logis

fro

tic model a

m the dat

i

a

ss

k
m k

k

k
k

k

y

E y

y k U







 



Logistic fixed - effects model 

x β

x β

β

x β

x β

sted GREG estimator (LGREG) 

(Lehtonen and Veijanen (1998)



EXAMPLE: Assisting model in GREG and 
model calibration - 3 
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2

2

for binary response variable 

exp( )
    ( ) ,  , 1,...,

1 exp( )

where  are domain-level random intercepts, ~ (0, )

Estimate  and   from the data

Calc

k d
m k dd

k d

d d u

u

y

u
E y u k U d D

u

u u N 



 
  

 

Logistic mixed model 

x β

x β

β

ˆ , 1,...,  and calculate fitted values:    

ˆ ˆexp( )
ˆ   ,   , 1,...,  

ˆ ˆ1 exp( )

Used in logistic mixed model assis

ulate estimates 

ted GREG estimator (MLGREG)

(Lehtonen, Särndal 

 d

k d
k d

k d

u d D

u
y k U d D

u



 
  

 

x β

x β

and Veijanen (2005)



GLMM assisted GREG estimator 

 For any assisting GLMM for GREG the formulation of GREG 
estimator for domain total and mean or proportion remain 
the same. The difference is in obtaining predicted y-values 
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MGREG estimator for domain total  of continuous y  

    Assisting model: Linear mixed model

ˆˆ ˆ    Predicted values:  ,  ,  1,...,

MLGREG for domain proportion  of binary y  

    Assist

d

k k d d

d

t

y u k U d D

p

   x β

ing model: Logistic mixed model: 

ˆ ˆexp( )
ˆ    Predicted values: ,   , 1,...,

ˆ ˆ1 exp( )

For MGREG and MLGREG the estimator is of the same form:

ˆ ˆ ˆ    ( )
d d

k d
k d

k d

dGREG k k k k

k U k s

u
y k U d D

u

t y a y y
 

 
  

 

   

x β

x β



Recall: Data requirements 

 Traditional linear GREG estimator and model-free 
calibration estimator 
 Unit-level x-vectors not necessarily needed 
 Known domain totals of x-variables only are needed 
 Applicable in ”survey” countries in particular 

 

 Extended GREG family estimators and model calibration 
estimators 
 Unit-level x-data are needed for all units in population 
 Applicable in ”register” countries 
 Applicable also in ”survey” countries if for example 

census data (or population data from another reliable 
register source) can be merged with sample survey data 
at the unit level 
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Estimation of the model 

 GLMMs can be fitted for example by: 

 R packages nlme or lme4 (glmer function) using 

maximum likelihood 

 SAS procedures GLIMMIX (using ML) or MIXED (using 
REML or ML) 
 

 Some methodological references 

 Datta (2009) 

 Jiang and Lahiri (2006) 

 Rao (2003, 2015) 
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NOTE on the role of models 

 The role of model differs in model-assisted design-based 
estimators and model-based estimators 
 

 Model assisted (GREG) uses models as assisting tools 

 This is to avoid design bias 

 Cost to be paid is poor accuracy in small domains 
 

 Model-based (SYN, EBLUP, EBP) rely solely on models 

 A benefit is better accuracy in small domains 

 Cost to be paid is the risk of design bias 

 

 NOTE: Recall trade-off between bias and accuracy! 
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Model calibration 

 Idea: Extension of model-free calibration beyond linear 
models for continuous study variables to cover nonlinear 
models for continuous variables and GLMs and GLMMs for 
binary, polytomous and count type study variables  
 

 Calibration principle in domain estimation:  
Calibration of totals of model predictions estimated from 
sample to agree with population totals of model predictions 

 NOTE: difference w.r.t. model-free calibration 
 

 Model calibration: Wu and Sitter (2001), Montanari and 
Ranalli (2005, 2009) 

 Model calibration for domains: Lehtonen and Veijanen 
(2016a,b) 
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Calibration estimators for totals 

Domain totals  ,  1,...,

Calibration estimators  

ˆ     

1/  design weight 

 method-specific g-weight for element   

 method-specific   for e

d

d d

d kk U

d k k k k kk s k s

k k

k

k

t y d D

t w y a g y

a

g k s

w calibration weight





 

 

 







 

lement  

  inclusion probability for element 

  planned domains case      

  unplanned domains case

k

d d

d d

k

k

s U

s s U





 



Calibration weights for model-free 
calibration 
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1

1

ˆCalibration estimator  for domain total  

 for model-free calibration

       , ,...,

      (1, ,..., )  

d

d d

d d

MFC

dMFC k k dk s

k k k d k Jkk s k U
k U k U

k k Jk

t w y t

Calibration equation

w N x x
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  
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
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General case 

 
2

Calibration weights   minimize

Calibrated weight

   

where  1/ ,   1,...,

 is vector of calibration variables

   (

s are defined i :

1

n

d d d

k

k k

k k k

k s k s k Uk

k k

k

k k

w

w a
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a d D

w a


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  
 

 

 

  λ z z
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λ z
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Model calibration equation  

ˆ      ,   

ˆwhere calibration vector is  (1, )

ˆ  are predicted values of y calculated for every 

by using the model fitted with the entire sample data set

d d d

MC

k k k d k

k s k U k U

k k

k

w N y

y

y k U

  

 
   

 





  z z

z

Se ˆ:  ,   1,...,

Examples of assisting GLMMs in MC

Linear mixed model: 

ˆˆ ˆPredicted values:  ,  ,  1,...,

Logistic mixed model:  

ˆPredicted values: 

d

MC

dMC k k

k s

k k d d

k

t w y d D

y u k U d D

y



 

   

mi - direct MC estimator

x β

ˆ ˆexp( )
,   , 1,...,

ˆ ˆ1 exp( )

k d
d

k d

u
k U d D

u

 
  

 

x β
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Properties 
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: Single-purpose weighting

- Explicit model statement

- Calibration of y-prediction totals at the domain level

- Coherence property for x-variable totals is not met

- MC estimators of dom

Model calibration

ain totals are of  type 

      - modelling for the whole sample 

      - calibration at the domain level

semi - direct

: Multi-purpose weighting

- No explicit model statement (linear model assumed)

- Calibration of x-variable totals at the domain level

- Coherence property with x-variable totals is 

Model - free calibration

met

- MFC estimators of domain totals are of direct type
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TAXONOMY: Statistical calibration methods in survey sampling 
 Model-free (linear) 

calibration MFC 
Model calibration  

MC 
Hybrid calibration  

HC 
       Weight 
       calibration  

Calibration to reproduce 
known population totals of 
auxiliary variables  

Calibration to the 
population total of 
predictions derived via 
specified model  

Combination of MC and 
MFC, depending on 
modeling and coherence  
requirements 

       Typical study 
       variable 

Continuous Continuous, binary, polytomous, count 
 

       Level of 
       auxiliary data  

Aggregate level Unit level 
 

Unit level 
Aggregate level 

       Model 
       specification 

Linear relationships  
(No explicit model 
statement) 

Many options 
e.g. Generalized linear (mixed) models family 

       Main aims Coherence with published 
statistics 
 

“Multi-purpose” weighting 
 

Accuracy improvement 

Accuracy improvement 
 

Flexible modelling 
 

Accuracy improvement  
 

Flexible modelling 
 

Coherence with published 
statistics 

        Selected   
        literature 

     

Deville & Särndal (1992) 
Estevao & Särndal (1999) 
Särndal (2007) 
Lehtonen & Veijanen (2009) 

Wu & Sitter (2001) 
Wu (2003) 
Montanari & Ranalli (2005)  
Lehtonen & Veijanen 
(2012, 2016a,b) 

Montanari & Ranalli (2009) 
Lehtonen & Veijanen (2015) 

 



Simulation experiment: Summary 

1 2

3

Synthetic register population  of one million elements and 40 domains

Auxiliary x-variables:

      , x  continuous variables

        categorical variable with 5 classes (treated as continuous  ic

U D

x

x x



   

1

n models)

Domain size  in domain  determined by ,   

Response variable  was created by a mixed model with fixed and random effects       

Random intercept  and 

2,5

random slopes , 

d d

d d d

exp UnifoN U R R

y

m

u u

r

u 2 3 and , all following (0,0.04)

were associated with each domain 

After creating x-variable values, the values of response variable  were created 

in each domain  by linear mixed model: 

      1

d

k

u N

d

y

d

y   1 1 2 2 3 3

rrors  (0, ) 

Sampling: 1,000 independent SRSWOR samples of si

(1.25 )x (0.75 )x (5 ) ,  ,

ze 4000 elem

 1,...,

E 5

ents

d k d k d d k d

N

n

u u u x u k U d D



     



  
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Properties of classes of cx  in the population. 

 

Class 1 2 3 4 5 

Share of 
population 
(%) 

6.7 13.3 20.0 26.7 33.3 

Mean of y  17.3 23.2 28.8 34.8 40.5 

 

Correlation coefficients of variables in the population.  

The categorical variable cx  is here treated as quantitative ( 3x ). 

 

 
2x  3x  y  

1x  0.34 0.00 0.49 

2x  1 0.40 0.61 

3x  0.40 1 0.69 

 



Assisting models in MC 

1 2 3

0 1 2 3

with  domain-level random intercepts 

     for , 1,...,40  

   (1, , , )  continuous variables, known for all 

   ( , , , )   vector of fixed eff

d

k k d k d

k k k k

u

y u d

x x x

k U

k U



   





   





Linear mixed model 

x β

x

β

2 2

2and   from the  element sample  (by ML or REML)

Calculate estimate

ects

   ~ (0, ),   ~ (0, ),   and  independent

Estimate  

ˆ , 1,...,40 

ˆˆ ˆCalculate fitted values    ,   

s   

d u k d k

u

d

k k d d

u N N u

u

y

s

d

u k U

n

   





  

β

x β

1 2 0 1 2

, 1,...,40 

Model: (1, , )  and ( , , )k k k

d

x x   



  

Special case :

x β
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Estimators for domain total parameters  , 1,...,40
d

d kk U
t y d


   

 

Design-based direct estimators 

Direct HT estimator  

ˆ        where 1/
d

dHT k k k kk s
t a y a 


 

 

Direct model-free calibration estimator

ˆ      
d

MFC

dMFC k kk s
t w y




 

Model assisted design-based model calibration estimator 

Semi-direct model calibration estimator

ˆ      
d

MC

dMC k kk s
t w y




 

 



Quality measures of estimators 

• Design bias 

• Absolute relative bias 
ARB (%) 

 

 

 
• Averages calculated over 

domain sample size classes 
(minor/medium/major) 

 

• NOTE: Estimators     
considered are nearly 
design unbiased  

• Accuracy 

• Relative root mean 
squared error  

 RRMSE (%)  

 

 
1000

1

1ˆ ˆ( ) ( ) /
1000

d d k d d
k

ARB t t s t t


 
1000

2

1

1ˆ ˆ( ) ( ( ) ) /
1000

d d k d d
k

RRMSE t t s t t


 
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Comparison scenario 

• Accuracy comparison of design-based direct estimators 
and semi-direct estimators 
 

• HT against calibration methods 
 

• Model-free calibration MFC against  
model calibration MC 
 

 

• NOTE: Information supply 

• MFC and MC: Supply of similar auxiliary information 
but in different form! 

• HT: No auxiliary information 
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Table 4. Mean relative root mean squared error (RRMSE) (%) of design-
based estimators of domain totals over domain sample size classes. 

 

Estimator 

 

Assisting model & domain-level 
calibration scheme 

Expected domain sample size 

Minor 
13-20 

Medium 
20-50 

Major 
>50 

Direct estimators 

HT None 24.00 13.23 7.59 

Model-free 
calibration 

Calibration: 
1 2(1, , )  k k kx x z    5.90   2.96 1.70 

Semi-direct estimators 

Model: 0 1 1 2 2 , , 1,...,40k k k d k dy x x u k U d           

Model 
calibration 

Calibration: ˆ(1, )k ky z    5.66   2.94 1.70 

 

 



Conclusions for this example 

  Calibration improves accuracy substantially over the HT 
 

   Under same auxiliary information supply, semi-direct 
model calibration MC outperforms direct model-free 
calibration MFC in accuracy in minor domains 
 

  General points: 

  Incorporation of auxiliary information in the estimation 
procedure by using flexible modeling is helpful in 
improving precision of domain and small area estimates 
over the standard methods 

  This is true for both the planned domains case and the 
unplanned domains case 
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CASE STUDY:  
Estimation of mean of “Perceived 
income” for regional domains 

• Source: Master Thesis in Statistics 

 

• Nico Maunula (2012). Small Area Estimation Methods with 
Application to Perceived Income for Domains in Finland in 
2009. Master’s Thesis, University of Helsinki. (In Finnish)  
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Study problem 

• Estimation of mean perceived income for regions in Finland 

• Regions: D = 70 NUTS4 areas 

• Target population: N about 4,3 million 

 

• Sizes of regions vary: 

• Smallest: about 2000 persons 

• Largest: about 1 million persons 
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EU-SILC data of Finland (2009) 

• Sample size n = 11,000 households 

• Interview data (CAPI) 

• Respondent: Household head 

• Stratified unequal probability sampling 

• Reweighting to adjust for unit nonresponse 

• Model-free calibration for final weights 
 

• Domains are of unplanned type 

Smallest domain sample size: 10 

Largest domain sample size: 2425 
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Auxiliary data 

• Auxiliary data are taken from statistical registers covering 
the target population  

• Registers maintained by Statistics Finland 

 

• Auxiliary data were merged with sample survey data at the 
unit level by using unique identification keys 

• Personal ID number  

83 



Study variable 

• HS120: Ability to make ends meet 

 

• Represents ”experienced” (perceived) income (contrasted 
with “actual” income) 

• A subjective wellbeing indicator  

 

• Ordinal level measurement with 6 levels 

• 1 = lowest, 6 = highest 

• Treated as continuous variable in modelling 

• Mean = 4.3 in SILC data 

 

• NOTE: Why “perceived income” This is because it is not 
available in administrative registers! 
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EXAMPLE: Poverty mapping 
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Auxiliary variables  

• Variables (for HH head) from statistical registers  
• Gender 
• Age group (4 age groups) 
• Education (3 classes)  
• Actual (register) income 
• Socio-economic status (6 classes) 
• Stage in life of household-dwelling unit (5 classes) 

 
• Categorical variables are transformed to indicator (dummy) 

variables 
• 16 x-variables in the regression model 
• All variables statistically significant 
• R squared = 15% 
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Models 
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2

0 1 16 16

0 1 16 16

Linear fixed-effects model

   ... ,  ,  ,  (0, )

where beta coefficients are common for all domains

Linear mixed model

    ... ,  ,  1,...,70

with doma

k k k k k

k d k k k d

y x x k U N

y u x x k U d

     

   

     

       

2 2

in-level random intercepts 

(0, ),  (0, ),   and  independent

d

d u k d k

u

u N N u   
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Population mean for domain : y / ,  1,...,70

HT estimator for domain means

ˆ   ,  1,...,70 

ˆ ˆ   y  /

wnere  are known domain sizes in population

GREG estimators for domai

d

d d d

dHT k kk s

dHT dHT d

d

d t N d

t w y d

t N

N



 

 





n means

ˆ ˆ ˆ   ( ) ,  1,...,70

ˆ ˆ   y  /

where  are final calibrated weights (g-weights)

d d
dGREG k k k kk U k s

dGREG dGREG d

k k k

t y w y y d

t N

w a g

 
   





 



GREG estimators 
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0 1 16 16

0

GREG assisted by linear fixed-effects model 

Model fitted by ML

Predicted values 

ˆ ˆ ˆˆ   ... ,  

MGREG assisted by linear mixed model 

Model fitted by REML

Predicted values

ˆˆ ˆ   

k k k

k d

y x x k U

y u

  



    

  1 16 16
ˆ ˆ... ,  ,  1,...,k k dx x k U d D     



Variance estimators  
(unplanned domains) 
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   

 

   

2

2

HT estimator for domain means

ˆ ˆ ˆ ˆ   /

ˆ                 /
( 1)

where { }  are extended y-variables

GREG estimators for domain means

ˆ ˆ ˆ ˆ   /

U dHT U dHT d

k dk dHT

k sd

dk d k

U dGREG U dGREG d

V y V t N

n
w y t n

N n

y I k U y

V y V t N





 


 





 

2

2

2
ˆ                    /

( 1)

where { }  are extended residuals

k dk dHTe

k sd

dk d k

n
w e t n

N n

e I k U e



 


 


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   

 
 

ˆStandard error of domain mean estimate 

ˆ ˆ ˆ   s.e ,  1,...,70

ˆCoefficient of variation of domain mean estimate 

ˆs.e
ˆ   cv   1,...,70

ˆ

d

d d

d

d

d

d

y

y V y d

y

y
y d

y

 
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Points for discussion 

• Strategies in sampling design phase 
 

• Strategies in estimation phase 
 

• Share of labor between sampling design 
and estimation design 
 
 

• NOTE: Key feature: Clever use of auxiliary data 
and modelling! 
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ANNEX Notation 
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Fixed and finite population {1,2,..., ,..., }U k N  and sample s U  

Variable of interest y with values , ky k U  regarded as 

fixed but unknown  

Auxiliary variable vector kx  known for all units k U  

Sample inclusion indicator , kZ k U , represents how many times 

element k is included in sample s 

WOR sampling: 1 if , 0 otherwisekZ k s   

Inclusion probability { 1 }, 0 1, k k kP Z k U       

Sample selection probability 

       ( ) { 1 , , 0 , , }k lp s P Z k s Z l s k l       

( )p s  is called sampling design 



Design-based (randomization-based) 
inference  
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The source of randomness is the sampling design p(s) 
 

Inference is based on assumed hypothetical repeated sampling 
under design p(s) from the fixed population U 
 

The random variables used for inference are the , kZ k U  
 

Example: Horvitz-Thompson (1952) estimator of population total 

kk U
t y


 : 

 

      ˆ k k
HT kk s k U

k k

y y
t Z

  
    



Model-based inference 
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Model-based (prediction-based) inference 
 

The values , ,ky k U  are assumed to be realizations of random  

vectors that follow a stochastic model 
 

Let kY  represent the r.v. generating the value ky  for unit k 
 

Example: The ratio model ,k k kY x    where k are i.i.d with  

mean 0 and variance 2

kx   
 

Prediction estimator (Brewer 1963) of population total kk U
t y


 : 

 

      ˆ ˆ ,pred k kk s k s
t y x

 
    

 

where ˆ /k kk s k s
Y x

 
   is the BLU estimator of   under the model 


