

EXAMPLE: VARIANCE ESTIMATION FOR GREG UNDER SRS

GREG estimator is given by

$$\hat{t}_{dGREG} = \sum_{k \in U_d} \hat{y}_k + \sum_{k \in S_d} a_k (y_k - \hat{y}_k), \quad d = 1,...,D$$

(1) Direct GREG for planned domains

Assume **stratified SRSWOR** sampling (proportional allocation). Sample of n_d elements is drawn from the population of N_d elements in domain d. Domain sample sizes n_d are fixed by the sampling design. Design weights are $a_k = N_d / n_d$ for domain d.

Assisting model for direct GREG:

$$y_k = \beta_{0d} + \beta_{1d} x_{1k} + ... + \beta_{Jd} x_{Jk} + \varepsilon_k = \mathbf{x}_k' \mathbf{\beta}_d + \varepsilon_k \text{ for } k \in U_d, \ d = 1,..., D,$$
 where

 $\mathbf{x}_{k} = (1, \mathbf{x}_{1k}, ..., \mathbf{x}_{jk}, ..., \mathbf{x}_{Jk})'$ is vector of auxiliary variable values known for every $k \in U$

 $\mathbf{\beta}_d = (\beta_{0d}, \beta_{1d}, ..., \beta_{Jd})'$ is a vector of fixed effects defined for each domain separately

Model fitting by OLS. We obtain fitted values $\hat{y}_k = \mathbf{x}_k' \hat{\boldsymbol{\beta}}_d$ for $k \in U_d$.

Approximate variance estimator for direct GREG estimator for planned domains

$$\hat{V}_{SIS}(\hat{t}_{dGREG}) = N_d^2 (1 - \frac{n_d}{N_d}) (\frac{1}{n_d}) \sum_{k \in S_d} \frac{(e_k - \overline{e}_d)^2}{n_d - 1}$$

where residuals are $e_k = y_k - \hat{y}_k$, $k \in s_d$, and $\overline{e}_d = \sum_{k \in s_d} e_k / n_d$ is the mean of residuals in domain d (d = 1, ..., D).

(2) Indirect GREG for unplanned domains

Assume **SRSWOR sampling** with n elements drawn from the population of N elements. Domain sample sizes n_d are now random. Sampling fraction is n/N and design weights are $a_k = N/n$ for all $k \in U$.

Assisting model for indirect GREG:

$$\mathbf{y}_{k} = \beta_{0} + \beta_{1} \mathbf{x}_{1k} + \ldots + \beta_{J} \mathbf{x}_{Jk} + \varepsilon_{k} = \mathbf{x}_{k}' \mathbf{\beta} + \varepsilon_{k}$$
 for $k \in U$ where

 $\mathbf{x}_k = (1, \mathbf{x}_{1k}, ..., \mathbf{x}_{jk}, ..., \mathbf{x}_{Jk})'$ is vector of auxiliary variable values known for every $k \in U$

 $\beta = (\beta_0, \beta_1, ..., \beta_J)'$ is a vector of fixed effects defined for the whole population

Model fitting by OLS. We obtain fitted values $\hat{y}_k = \mathbf{x}'_k \hat{\boldsymbol{\beta}}$ for $k \in U$.

By denoting $y_{dk} = I\{k \in U_d\}y_k$ and $e_{dk} = y_{dk} - \hat{y}_k$, d = 1,...,D, we obtain an **approximate variance estimator**:

$$\hat{V}_{Srs}(\hat{t}_{dGREG}) = N^2 (1 - \frac{n}{N}) (\frac{1}{n}) \sum_{k \in S} \frac{(e_{dk} - \overline{e}_d)^2}{n - 1}$$

Note that also elements outside the domain d contribute to the variance estimate, because $e_{dk} = -\hat{y}_k$ for elements $k \notin U_d$ and $k \in s$.

Next page: Illustration of HT and GREG estimation under more complex sampling design.

Table 3. Mean absolute relative error MARE (%) and mean coefficient of variation MCV (%) of direct HT and direct GREG

estimators for **planned** domains.

	commutation for plannica domaino.									
	H	Т	GREG							
	1		2		3					
	None		Domain sizes and		Domain sizes and					
Auxiliary			domain totals of		domain totals of					
information			EMP		EMP and EDUC					
Domain sample size class	MARE %	MCV %	MARE %	MCV %	MARE %	MCV %				
$8 \le n_d \le 33$	11.5	11.9	5.8	7.7	6.4	6.8				
	7.6	9.0	3.7	8.0	3.6	8.1				
$\begin{array}{c} \text{Major} \\ 46 \leq n_d \leq 277 \end{array}$	12.5	5.2	4.3	4.7	5.2	3.7				

EXAMPLE: Direct HT and GREG estimation for planned domains

Sample: Stratified πPS (stratified WOR type PPS)

Strata: NUTS3, D = 12 domains, domain sample sizes n_d fixed

HT estimator:

$$\hat{t}_{dHT} = \sum_{k \in S_d} a_k y_k \qquad \hat{V}_A \left(\hat{t}_{dHT} \right) = \frac{1}{n_d (n_d - 1)} \sum_{k \in S_d} \left(n_d a_k y_k - \hat{t}_{dHT} \right)^2$$

Assisting models in GREG:

$$\begin{aligned} y_k &= \beta_{0d} + \beta_{1d} \text{EMP}_k + \varepsilon_k \quad \text{(column 2)} \\ y_k &= \beta_{0d} + \beta_{1d} \text{EMP}_k + \beta_{2d} \text{EDUC}_k + \varepsilon_k \quad \text{(column 3)} \end{aligned}$$

Model fitting by WLS with weights $a_k = 1/\pi_k$. Fitted values are $\hat{y}_k = \mathbf{x}_k' \hat{\boldsymbol{\beta}}_d$ and residuals are $e_k = y_k - \hat{y}_k$.

Direct GREG estimator:

$$\begin{aligned} \hat{t}_{dGREG} &= \sum\nolimits_{k \in U_d} \hat{y}_k + \sum\nolimits_{k \in S_d} a_k e_k = \sum\nolimits_{k \in S_d} a_k g_{dk} y_k \\ \hat{V}_2 \left(\hat{t}_{dGREG} \right) &= \sum\nolimits_{k \in S} \sum\nolimits_{l \in S_d} (a_k a_l - a_{kl}) g_{dk} e_k g_{dl} e_l \end{aligned}$$

g-weights are
$$g_{dk} = I_{dk} + I_{dk} (\mathbf{t}_{dx} - \hat{\mathbf{t}}_{dx})' \hat{\mathbf{M}}_{d}^{-1} \mathbf{x}_{k}$$
, where $I_{dk} = I\{k \in U_{d}\}$

Table 4. Mean absolute relative error MARE (%) and mean coefficient of variation MCV (%) of direct HT and indirect GREG estimators for **unplanned** domains.

communication of an prainted domainor									
	H	Γ	GREG						
	1		2						
	Nor	ne	Domain sizes						
Auxiliary			and domain						
information			totals of EMP						
Domain									
sample size	MARE	MCV	MARE	MCV					
class	%	%	%	%					
Minor									
$8 \le n_d \le 33$	11.5	28.3	7.6	9.0					
Medium									
	7.6	20.3	3.8	8.1					
$34 \le n_d \le 45$	7.0	20.3	3.0	0.1					
Major									
$46 \le n_d \le 277$	12.5	9.6	4.1	5.0					
$i \circ = i \circ_d = \mathbf{Z} i \circ i$									

EXAMPLE: HT and indirect GREG estimation for unplanned domains

Sample: πPS (PPS-WOR)

Domains: NUTS3, D = 12 domains, domain sample sizes n_d random

HT estimator:

$$\hat{t}_{dHT} = \sum_{k \in S_d} a_k y_k \qquad \hat{V}_U(\hat{t}_{dHT}) = \frac{1}{n(n-1)} \sum_{k \in S} (n a_k y_{dk} - \hat{t}_{dHT})^2$$

Assisting model in GREG:

$$Y_k = \beta_0 + \beta_1 EMP_k + \varepsilon_k$$
 (column 2)

Model fitting by WLS with weights $a_k = 1/\pi_k$. Fitted values are $\hat{y}_k = \mathbf{x}_k' \hat{\boldsymbol{\beta}}$ and residuals are $e_k = y_k - \hat{y}_k$.

Indirect GREG estimator:

$$\begin{aligned} \hat{t}_{dGREG} &= \sum\nolimits_{k \in U_d} \hat{y}_k + \sum\nolimits_{k \in S_d} a_k e_k = \sum\nolimits_{k \in S} a_k g_{dk} y_k \\ \hat{V} \Big(\hat{t}_{dGREG} \Big) &= \sum\nolimits_{k \in S} \sum\nolimits_{l \in S} (a_k a_l - a_{kl}) g_{dk} e_k g_{dl} e_l \end{aligned}$$

g-weights are
$$g_{dk} = I_{dk} + (\mathbf{t}_{dx} - \hat{\mathbf{t}}_{dx})' \hat{\mathbf{M}}^{-1} \mathbf{x}_k$$
, where $I_{dk} = I\{k \in U_d\}$