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Topic 1 INTRODUCTION 

• Introduction to small area estimation (SAE) 

• Motivation:  

what is small area estimation? 

why SAE? 
 

• Estimation tasks in SAE 
 

• Main literature 
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Small area estimation:  
World-wide trend 

• An increasing need in society for reliable statistics for 

regional and other population subgroups or domains, 

including sub-populations with small sample sizes 
 

• SAE: Challenge for official statistics describing the society 

• SAIPE (U.S.) Allocation of federal state funds to small local areas 

based on model-based estimates obtained by SAE methods 
 

• SAE: Challenge for scientific research 

• Good review on SAE research: Pfeffermann (2013) 

Risto Lehtonen 4 

http://www.census.gov/did/www/saipe/


Lively SAE Research under EU’s 
Framework Programmes  

• Small area estimation research under Framework 

Programmes (FPs) in Europe 

• Actors: Universities & NSIs 
 

• EURAREA Project (2001-2004), EU/FP5 

AMELI Project (2008-2011), EU/FP7 

SAMPLE Project (2008-2011), EU/FP7  

InGRID Project (2013-2017), EU/FP7  

 

 

• Main results of AMELI and SAMPLE: 

• Pratesi M. (Ed.) (2016) Analysis of Poverty Data by Small Area 

Estimation. Chichester: Wiley.  
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http://www.ons.gov.uk/ons/guide-method/method-quality/general-methodology/spatial-analysis-and-modelling/eurarea/index.html
https://www.uni-trier.de/index.php?id=25157
http://cordis.europa.eu/project/rcn/92010_en.html
http://cordis.europa.eu/project/rcn/108538_en.html


Series of SAE Conferences 

• EWORSAE European Working Group on Small 
Area Estimation http://sae.wzr.pl/ 

SAE1993 (Warsaw, Poland) 

SAE2000 (Riga, Latvia) 

SAE2005 (University of Jyväskylä, Finland) 

SAE2007 (University of Pisa, Italy) 

SAE2009 (University of M. Hernandez, Elche, Spain) 

SAE2011 (University of Trier, Germany) 

SAE2013 (Bangkok, Thailand) 

SAE2014 (Poznan University of Economics, Poland) 

SAE2015 (Santiago, Chile) 

SAE2016 (Maastricht, The Netherlands) 

SAE2017 (Paris, France) 
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http://sae.wzr.pl/
http://www.stat.jyu.fi/sae2005/index.html
http://sae2017.ensai.fr/


Main materials for this course 

 Model-assisted SAE: 

 Lehtonen R. & Veijanen A. (2009). Design-based methods of 

estimation for domains and small areas. Chapter 31 in Rao C.R. 

and Pfeffermann D. (Eds.). Handbook of Statistics. Sample 

Surveys: Inference and Analysis. Vol. 29B. New York: Elsevier. 
 

 Lehtonen R. & Pahkinen E. (2004). Practical Methods for Design 

and Analysis of Complex Surveys. Second Edition. Chichester: 

John Wiley & Sons. Chapter 6. 
 

 Lehtonen R. & Veijanen A. Model-assisted methods to small area 

estimation of poverty indicators. In: Pratesi M. (Ed.) (2016). 

Analysis of Poverty Data by Small Area Estimation. Wiley.  
 

 

 Model-based SAE: 

 Rao J.N.K. (2003). Small Area Estimation. New York:  

John Wiley & Sons. (Second edition Rao & Molina 2015) 
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Ch31-N53124.pdf
Ch31-N53124.pdf
Ch31-N53124.pdf
http://eu.wiley.com/WileyCDA/WileyTitle/productCd-0470847697.html


Estimation for domains and small 
areas 

• Domains of interest 
• Well-defined (non-

overlapping) population 

subgroups 

• Regional areas 

• Sex-age groups within 

regions 

• Grouping of enterprises into 

domains according to the 

type of industry  
 

• Estimation for domains 
• Estimation of population 

quantities for the desired 

domains of interest 
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• Small area estimation SAE 
• Estimation for domains 

whose sample size is small 

or very small (even zero) 

 
• Alternative SAE definition  

(Partha Lahiri):  
 

• Small area = Domain of interest 

for which the sample size is not 

adequate to produce reliable 

direct estimates 



EXAMPLE 1: The world by income 

• http://data.worldbank.org/products/wdi-maps 

Risto Lehtonen 
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http://data.worldbank.org/products/wdi-maps
http://data.worldbank.org/products/wdi-maps
http://data.worldbank.org/products/wdi-maps


More recent: 2003-2013 
http://ec.europa.eu/eurostat/tgm/mapToolClosed.do?tab=map&init=1&plugin=1&language
=en&pcode=tgs00026&toolbox=types 
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EXAMPLE 2: Disposable income per 
capita by NUTS3 regions in the EU 

http://ec.europa.eu/eurostat/tgm/mapToolClosed.do?tab=map&init=1&plugin=1&language=en&pcode=tgs00026&toolbox=types
http://ec.europa.eu/eurostat/tgm/mapToolClosed.do?tab=map&init=1&plugin=1&language=en&pcode=tgs00026&toolbox=types


EXAMPLE 3: Poverty map for Estonia  
World Bank 2014 – Regional poverty rates based on SILC data 

Risto Lehtonen 
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Components of typical estimation 
task - 1 

• Domains of interest 

• Breakdown of population into sub-populations (areas, domains) 

• The number of domains of interest is usually large 

• Study variable(s) 

• Target parameters for the domains 

• Totals 

• Means 

• Ratios 

• Percentiles, medians 

• Poverty indicators 

• AROPE indicators, ... 
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Components of typical estimation 
task - 2 

• Data sources 

• Sample survey data source 

• Unit-level values of study variable 
 

• Auxiliary data sources 

• Alternatives: Domain-level (area-level) aggregates of auxiliary 

variables or unit-level values of auxiliary variables x that can be 

merged with sample data at the unit level 

• NOTE: Availability depends on the statistical data infrastructure  
 

• Statistical models 

• Example: Generalized linear mixed models GLMM family  

• Alternatives: Domain-level (area-level) models or unit-level 

models 
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Components of typical estimation 
task - 3 

• Estimators of domain parameters 

• Model-assisted design-based estimators 

• Examples: Generalized regression (GREG) estimators and 

calibration estimators 

• Model-based estimators 

• Examples: Empirical best linear unbiased predictor (EBLUP) and 

empirical best predictor (EBP) type estimators 

• Variance estimators, MSE estimators 

• Computation, graphical illustration 

• Quality assurance 

• Publication 
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Topic 2 BASIC CONCEPTS & 
APPROACHES 

• Two main SAE approaches: 

Design-based and model-based SAE 
 

• Two different domain structures:  

Planned and unplanned domains 
 

• Two different types of estimators for domains:  

Direct and indirect estimators 
 

• “Borrowing strength” 
 

• Simple examples 
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Approaches for domain estimation  
and SAE 

• Design-based approach 

• Model-based approach 

 -------------------------- 

• Additional variants  

• Bayesian methods: Empirical Bayes, Hierarchical Bayes 

• Poverty mapping: World Bank, Peter Lanjouw, Chris Elbers,… 

• PovMap Software 
http://iresearch.worldbank.org/PovMap/PovMap2/PovMap2Main.asp 

• Spatial microsimulation:  

Rahman A & Harding A. (2016) Small Area Estimation and 

Microsimulation Modeling. Chapman and Hall/CRC. 
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http://iresearch.worldbank.org/PovMap/PovMap2/PovMap2Main.asp


Main methods for domain 
estimation and SAE 

• Design-based methods 

• Horvitz-Thompson (HT) estimator 

• Hájek estimator 

• Generalized regression (GREG) estimators 

• Model-free calibration estimators 

• Model-assisted calibration estimators 
 

• Model-based methods 

• Synthetic (SYN) estimators 

• Empirical best linear unbiased predictor (EBLUP) estimators 

• Empirical best predictor (EBP) type estimators 
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Basic small area estimation approaches 
 

A. Design-
based  
direct 

estimation 
Domains are 
considered as 

independent sub-
populations (strata, 
planned domains) 

B. Indirect estimation 
"Borrowing strength" from other domains 

by using models and auxiliary data 
(unplanned domains) 

 

B1. Design-
based 
model-

assisted 
estimation 

 
B2. Model-based estimation 

 
Horvitz-

Thompson 
 

Hajék 
 

Model-free 
calibration 

 

Direct GREG 

 
Extended 

GREG 
 

Model-assisted 
calibration 

Unit-level models Area-level models 

 
SYN  

 

EBLUP 
 

EB 
 

 
Fay-Herriot 

 



Design-based  
approach 

 The randomness is introduced 

by the sampling design 
 

 Statistical properties (design 

bias, design accuracy) are 

evaluated under the sampling 

design 
 

 Examples of estimators 
 Horvitz-Thompson (HT)  

 Model-free calibration methods 

 Model-assisted methods e.g. 

generalized regression (GREG) 

• assisted by linear model (Särndal 

et al. 1992) 
 

 Overview: see Lehtonen & 

Veijanen (2009) 

 The randomness is introduced 

by an assumed 

superpopulation model 
 

 Statistical properties (model 

bias, model accuracy) are 

evaluated under the model 
 

 Examples of estimators 
 Empirical best linear unbiased 

predictor (EBLUP) estimator with 

area-level model e.g. Fay-Herriot 

model 

 Nested error linear regression 

model with unit-level data (Battese 

et al. 1988) 

 Synthetic estimators 
 

 Overview: see Datta (2009) 
Risto Lehtonen 19 

Model-based  
approach 



EXAMPLES of estimators under SRS 
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NOTE: Role of sampling complexities 

 Design-based approach: 
 

 Estimators are constructed 

such that the properties of 

the sampling design are 

accounted for 
• Stratification, clustering, 

weighting 

• EXAMPLE: HT estimator 

 

 Model-based approach: 
 

 Accounting for sampling 

design properties is not 

necessarily an issue  BUT is 

possible if desired 
 

• EXAMPLES:  
 

• Pseudo EBLUP (Rao 2003) 

• Mixed models in accounting 

for clustering & stratification 

• Incorporation of stratification 

variables in the model 
 

• NOTE: No consensus within 

statistical communities 

• NOTE: CASE STUDY 2 
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Key properties of estimators - 1 

• Key properties of design-based estimators 

• (Nearly) design unbiased (by construction principle) 

• Models are used as assisting tools in inference 

• Estimators remain unbiased even under a wrong model 

• Accuracy can be good with a strong model 

• Accuracy can be poor if domain sample size is small 
 

• Key properties of model-based estimators 

• Design biased (by construction principle) 

• Inference relies on the correctness of the model 

• Accuracy can be good with a strong model, even for small 

domains 

• Accuracy can be poor with an incorrect model, irrespective of 

domain sample size  
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Key properties of estimators - 2 
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NOTE on the role of models 

 The role of model differs in model-assisted design-based 

estimators and model-based estimators 
 

 

 Model assisted design-based methods use models as 

assisting tools 

 Benefit: design bias near to zero 

 Cost to be paid: poor accuracy for small domains 
 

 

 Model-based methods rely solely on models 

 Benefit: improved accuracy for small domains 

 Cost to be paid: the risk of nonzero design bias 
 

 

 NOTE: Trade-off between bias and accuracy! 
 

 

 NOTE: “All models are wrong but some are useful”  

(George Box 1978) 

Risto Lehtonen 
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 EXAMPLE 4. Lehtonen, R., Särndal, C.-E. and Veijanen, A. (2005): Does the 
model  matter? Comparing model-assisted and model-dependent estimators of class 
 frequencies for domains. Statistics in Transition 7, 649-673. 
 

  

 
FIGURE 1 Distribution of relative error (%) of design-based MLGREG (left-hand side) and model-
based MLSYN (right-hand side) estimators of domain totals of binary study variable in domain 31 
of the generated LFS population. (Design-based simulation experiment, 1,000 independent simple 
random samples of 12,000 elements from population of three million elements and 84 domains) 
 

Relative error of an estimator ˆ
dt  for sample , 1,...,1000is i  , in domain d is defined as  

                                           ˆ ˆRE( ) ( ( ) ) /d d i d dt t s t t  , 1,...,84d   Risto Lehtonen 25 



Lessons learned – EXAMPLE 4 

 MLGREG: design-based generalized regression (GREG) estimator 

assisted by logistic mixed model 

 MLSYN: model-based synthetic estimator using the same logistic 

mixed model formulation as GREG 
 

 QUESTIONS: 

 Which one of the two estimators indicates smaller design bias? 

 Which one of the estimators indicates smaller design variance? 

 

 NOTE: Design bias refers to the difference between the expected value (or 

mean) of the distribution (in repeated sampling from the population) of the 

estimator and the true parameter value 

 Design variance refers to the spread of the distribution of the estimator around  

its expectation  

 

Risto Lehtonen 
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Important concepts 

• Type of domains of interest 
• Planned domains  /  Unplanned domains 

 

• Type of domain estimator 
• Direct  /  Indirect 

 

• Availability of auxiliary (population) data 
• Unit-level  /  Aggregate-level (area-level) 

 

• Type of model 
• Linear model /  Non-linear model 

• Fixed-effects model  /  Mixed model 
 

• Accuracy measures 
• Variance estimators  /  MSE estimators 

Risto Lehtonen 
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Two main domain structures 

• Planned domains 
• The most important domains are defined as strata in the 

sampling design (stratified sampling) 

• The strata are independent sub-populations 

• Domain sample sizes are fixed in advance 

• Domain sample sizes are controlled by allocation scheme 

• Small sample sizes can be avoided if desired 
 

• Unplanned domains 
• Domain structure is not connected to the sampling design 

• Domain sample sizes are not fixed but are random 

• Small domain sample sizes can occur 

• Typical in SAE practice 
 

• NOTE: Similarity of unplanned domains with post-stratifiction, see 

Lehtonen & Pahkinen (2004) pp. 89-92 

Risto Lehtonen 
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Direct and indirect estimation 

• Direct estimation for domains 

• Direct domain estimator uses values of the variable of 

interest y only from the time period of interest and only 

from units in the domain of interest  

(Federal Committee on Statistical Methodology, 1993) 

• Often in connection to planned domain structures 
 

• Indirect estimation for domains 

• Indirect domain estimator uses values of the variable of 

interest y from a domain and/or time period other than the 

domain and time period of interest 

• Often in connection to unplanned domain structures 
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Domain type and estimator type 1 

Risto Lehtonen 

Domain type Estimator type 

Direct Indirect 

 
Planned 
 

 

Typical  
set-up 

 
More rarely 

 
Unplanned 
 

 
More rarely 

 

Typical  
set-up 
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“Borrowing strength” in SAE 

• Indirect estimators are attempting to “borrow strength” from 

other (similar) domains (spatial dimension) and/or from 

previous time points (temporal dimension) 
 

• For domains with small sample size, this is a well justified 

goal – Why?    
 

• The concept of “borrowing strength” is often used in model-

based small area estimation 
• E.g. Rao & Molina (2015) 

 

 Borrowing strength also is used for design-based model 

assisted estimators 
 E.g. Lehtonen & Veijanen (2009) 

 See EXAMPLE 11 
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EXAMPLE 5  
Direct and indirect GREG 

33 

Assume continuous y-variable and one continuous auxiliary x-variable

Domains of interest , 1,...,

Assisting   in two cases:

 a) Planned domains case:         ,  

d

k d k k

U d D

y x k 



 

linear fixed - effects models

0 0

, 1,...,

 b) Unplanned domains case:     ,  

NOTE: Intercept parameters  0 

NOTE: Models a) and b) are different. In what essential way? 

For both domain types, let us construct a

d
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a) Direct GREG estimator for domains 

34 

Assisting model: ,   ,  1,...,
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b) Indirect GREG estimator for domains 

35 
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Why this GREG estimator is indirect?

NOTE: Auxiliary information needed: x-totals  for domains
dx

stimator

t
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Lessons learned – EXAMPLE 5 

 Which one of the two GREG estimators would YOU prefer?  

a) Ratio estimator 

b) Regression estimator 

 

 Why? 

 

 Further , which one of the two GREG estimators, the ratio 

estimator or the regression estimator, aims at “borrowing 

strength” for domain d from other domains? 

Risto Lehtonen 
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Topic 3 TRADITIONAL DIRECT 
ESTIMATORS FOR DOMAINS 

• Definitions and notation  

• Why totals are important? 

• Estimation of domain totals for planned and 

unplanned domains 

• Unconditional and conditional approach 

• Horvitz-Thompson estimator 

• Variance estimation – different options 
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Some definitions and notation 

Risto Lehtonen 

Fixed and finite population {1,2,..., ,..., }U k N  
 

Inclusion probability: An observation k is included in a sample s 

with probability  k
P k s    

Design weight: 1/k ka   

 

Sample membership indicator: { } 1 if , 0 otherwisekI I k s k s     

Expectation of sample membership indicator ( )k kE I   

 

Probability of including both elements k  and l  ( )k l : 

( )
kl k l

E I I   with inverse 1/kl kla   ( kl ka a  when k l ) 

 

The covariance of kI  and l
I  is ( , )k l kl k lCov I I      
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Estimation of domain totals 

Risto Lehtonen 

Estimation of totals  

      , 1,...,
d

d kk U
t y d D


   

of variable of interest y  for D non-overlapping domains  

dU U , 1,2,..., ,...,d d D ,  

with (known or unknown) domain sizes d
N   

 

NOTE: For unknown d
N  an estimator 

ˆ 1/
d d

d k kk U k U
N a 

 
    is often used 
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Why domain totals are important? 

Risto Lehtonen 

Totals are basic and the simplest descriptive statistics for 
continuous (or binary) study variables 

Many other, more complex statistic are functions of totals 

Domain ratio:    d

d

kk Udy

d

dz kk U
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R

t z
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Estimator:         
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Domain mean:  /
d d d

y t N  

Estimator:         ˆ ˆ ˆˆ ˆ/   or  /  
d d d d d d

y t N y t N   
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Estimation for planned domains 

Risto Lehtonen 

Sample s  is divided into subsamples 
d

s , 1,...,d D  
 

Planned domains:  
Stratified sampling with domains = strata 

 The population domains d
U  are taken as separate  

subpopulations i.e. strata 
 

 Domain sizes d
N  in domains d

U  are assumed known 
 

 Sample sizes dn  in domain samples d d
s U  are fixed in 

in the allocation scheme of the stratified sampling design 
 

 Standard estimators for the entire population are  
applicable for the domains as such, because the domains  
are taken as independent sub-populations 
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NOTE: Sample allocation for planned 
domains 

• Stratified sampling with a suitable allocation scheme is 

advisable in practical applications, in order to obtain control 

over the domain sample sizes 
 

 Bankier, M.D. (1988). Power allocations: Determining sample sizes for 

subnational areas. The American Statistician 42, 174-177.  
 

 Choudhry, G.H., Rao, J.N.K. & Hidiroglou, M.A. (2012). On sample 

allocation for effective domain estimation. Survey Methodology 38, 23-29.  
 

 Falorsi, P.D. & Righi, P. (2008). A balanced sampling approach for multi-

way stratification for small area estimation. Survey Methodology 34, 223–

234.  
 

 Molefe W.B. & Clark R.G. (2015). Model-assisted optimal allocation for 

planned domain using composite estimation. Survey Methodology 41, 377–

387.  

 

Risto Lehtonen 
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Estimation for unplanned domains 

Risto Lehtonen 

Unplanned domains: A single sample s of size n  
is drawn from population U   

Domain samples are 
d d

s s U   

RECALL: Domain sample sizes 
dn  are considered random 

Extended variable of interest dy  defined as: 

 dk ky y  for 
d

k U  and 0
dk

y   for 
d

k U   

In other words, { }dk d ky I k U y   

Because 
d

d k dkk U k U
t y y

 
   , we can estimate  

domain total of y  by estimating the population total of dky   
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NOTE: Unconditional and conditional 
inference 

• In the unconditional approach, the contribution of extra 

variance caused by random domain sample sizes can be 

incorporated in variance expressions and computation 

• Variance estimates for unplanned domains are often used 
 

• In the conditional approach, inference is conditional on the 

realized sample and domain sample sizes are considered as 

fixed quantities 

• Variance estimators for planned domains are often used  

• Note again the similarity with post-stratification 
 

• Lehtonen & Pahkinen (2004) p. 90  

• Lehtonen & Veijanen (2009) p. 224 

• Coquet & Lesage (2012) 

• Rao J.N.K. (1999) 
 

Risto Lehtonen 
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Horvitz-Thompson estimator of 
domain totals 

NOTE: More detailed treatment of HT (and GREG) under planned domains: 

See Lehtonen & Veijanen (2009) 

Risto Lehtonen 

Horvitz-Thompson (HT) estimator (expansion estimator)  
is the basic design-based direct estimator of the domain  

total 
d

d kk U
t y


 , 1,...,d D : 

 ˆ / /
d d d

dHT k k k k k k k

k U k s k s

t I y y a y 
  

      (1) 

HT estimates of domain totals are additive: they sum up  

to the HT estimator ˆ
HT k kk s

t a y


  of the population total  

 kk U
t y


                (2) 

As ( )k kE I  , the HT estimator is design unbiased for dt   
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Variance estimation for HT - 1  

Risto Lehtonen 

Standard variance estimator for ˆ
dHT

t  under planned domains: 

  ˆ ˆ ( )
d d

dHT k l kl k l

k s l s

V t a a a y y
 

   (3) 

where 1/k ka   and 1/kl kla   

NOTE: Variance estimator (3) is somewhat impractical for many 

unequal probability sampling designs because the second-order 

inclusion probabilities kl
  are needed 

Approximations have been developed for standard sampling  

designs to be used in practical situations  

46 



Variance estimation for HT - 2 

Risto Lehtonen 

Variance estimation for planned domains in practice 
 

Approximations to kl
  for fixed- size without-replacement (WOR) 

probability proportional-to-size (πPS) designs : 
 

 Hájek (1964) and Berger (2004, 2005) approximation 
 

 Särndal (1996) approximation 
 

Alternative methods: Resampling 
 

 Berger and Skinner (2005) jackknife variance estimator  
 

 Kott (2006) delete-a-group jackknife variance estimator 
 

see Lehtonen & Veijanen (2009) page 226-227 
 

NOTE: For some design types , 
kl k l

k l     

47 



Variance estimation for HT - 3 

Risto Lehtonen 

Planned domains: Conditional variance estimator assuming fixed 

domain sample sizes 
 
Approximate estimator: 
 

    
21ˆ ˆ ˆ

( 1)
d

A dHT d k k dHT

k sd d

V t n a y t
n n 

 


         (4) 

 

where dn  refers to domain sample size 

 
For example, SAS Procedure SURVEYMEANS uses (4)  
for planned type domain structures 
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Variance estimation for HT - 4 

Risto Lehtonen 

Unplanned domains: Unconditional variance estimator  

by accounting for random domain sample sizes  
 

Approximate variance estimator by using extended domain  

variables dky : 

    
21ˆ ˆ ˆ

( 1)
U dHT k dk dHT

k s

V t na y t
n n 

 

 ,                     (5) 

where n is the total sample size  

NOTE: e.g. SAS procedure SURVEYMEANS uses (5)  
for unplanned cases 
 

NOTE: Extended domain variables are { }dk d ky I k U y   

Recall:  if ,  0 otherwisedk k dy y k U   
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Topic 4 DIRECT GREG AND 
MODEL-FREE CALIBRATION 

• Origins of the traditional GREG and calibration  

• Components of estimation procedure 

• Basic idea: Difference estimator 

• Population fit regression estimator 

• Direct GREG estimator for domain totals of continuous 

study variable 

• Variance estimators and approximations  

• Example 
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Traditional linear GREG estimator 

 GREG = Generalized regression estimator 

 

 Robinson P.M. & Särndal C.-E. (1983) Asymptotic properties of the 

generalized regression estimator in probability sampling, Sankhyā 

Ser. B, 45, 240–248. 

 

 Särndal, C.E. (1980) On π-inverse weighting versus best linear 

unbiased weighting in probability sampling. Biometrika 67, 639–650. 

 

 Särndal C.-E., Swensson B. & Wretman J. (1992) Model-Assisted 

Survey Sampling. New York: Springer. 

 

Risto Lehtonen 
51 



Traditional model-free calibration 
estimator 

 Calibration estimators 

 

 Deville, J.-C. & Särndal, C.-E. (1992). Calibration estimators in 

survey sampling. JASA 87, 376–382. 
 

 Estevao V.M. & Särndal C.-E. (1999) The use of auxiliary 

information in design-based estimation for domains. Survey 

Methodology  2, 213-221. 
 

 Särndal C.-E. (2007) The calibration approach in survey theory and 

practice. Survey Methodology 33, 99–119. 

 

 Kim J.K. & Park M. (2009) Calibration estimation in survey sampling 
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Components of GREG estimation 
procedure 

• Sample survey data 
• Access to unit-level sample survey data 

 

• Model specification and model fitting 
• Specification of the linear fixed-effects model 

• Estimation of model parameters from the sample data 
 

• Auxiliary data 
• Access to domain-level or unit-level population data 

 

• Estimation of domain totals: Two alternatives 
• Estimation with domain-level auxiliary data 

• Estimation with unit-level auxiliary data  
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Population fit regression estimator -1 

Risto Lehtonen 

0

0 0

of population total  of  (Särndal 1980)

Let us assume known values  that are close to population

values  . We write the population total a

 

,

   ( )

s

k

k

k k k k

k U k U k

y

k U

t

y

y

t y y y y
 

  



 

Difference estimator  

0 0

  only are available!

Difference estimator: We estimate the 

                                   

In practice, sample val

second sum using HT

ues ,  

ˆ   ( ),  wher

: 

e 1/

U

k

DIFF k k k k k k

k U k s

y

t y a y

k

y

s

a 



 

   





 
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Population fit regression estimator -2 

Risto Lehtonen 

0

2 2

1

In practice, no such , exist! Let us use modelling...

Consider regression superpopulation mode

, 

         ,  ( )  (constant)

where (1, ,.

l 

is the vector of aux.., )  ili

k

k kk k k k

k k Jk

y

y Va

k

r

x x

U

   



   



x β

x

0 1

1

ary x-variables

the vector of regression coefficients

If we had access to population values 

least squares) 

( , ,...

estimator  is

, )  is 

 then 

a LS (  of 

    

:

J

k

LS

LS k k k k

k U k U

y U

y

  



 





  
  

 
 

β

β β

β x x x  


 
 
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Population fit regression estimator -3 

Risto Lehtonen 

Using  and , , we calculate fitted values 

for all . We define 

ˆ   ( ),   where  1/

Because we only have access to

LS k k k LS

REG k k k k k k

k U k s

k U y

k U

t y a y y a 
 

 



    

population fit regressio

β x x β

 

n estimator :

1

plugging in HT estimators for both

sum components of   for weighted LS estimator

 sample values , 

we estimate  by 

ˆ    

ˆand compute fitted y-values 

:

k

LS

WLS k k k k k k

k s k s

k

y s

a a y

y



 



   
    

   



 

β

β

β x x x

ˆ  for all k WLS ky Ux β
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Direct GREG estimator for domains -1 

Risto Lehtonen 

:

Assisting linear fixed-effects model: 

   

  

Domain-spe

,                                                  (6)  

 is esticific parameter ma

d
d kk U

k kk d k d

d

t y

y k U




  

Direct GREG estimator of domain 

β

total

x β

1

ted using

weighted LS in each domain: 

ˆ ˆ   

where weights are 1/

d d

WLSd dd k k k k k k

k s k s

k k

a a y

a 



 

 
   

 



 β β x x x
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Direct GREG estimator for domains -2 

Risto Lehtonen 

ˆˆUsing beta estimates of (6), fitted values , , 

ˆand residuals , , are incorporated into 

ˆ ˆ ˆ ˆ   ( )           
d d d d

k k d d

k k k d

dGREG k k k k k k k

k U k s k U k s

y k U

e y y k s

t y a y y y a e
   

 

  

       

x β

direct GREG estimator 

(adjustme

   (7)

Fir

nt for de

st part: Synthetic

sign bias of SYN e

 (SYN) estimator

Second part: HT esti

stimator)

NOTE: (7) operates with uni

mator of residual 

t-level x-data fro

total 

m population

d
kk U

E

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Traditional regression estimator 

Risto Lehtonen 

 

 1

ˆˆ ˆ ˆ   ,                        

Rearranging the terms of GREG: tr

                    (8)

where    

aditional regression estimator

, ,...,

              

d d d

dGREG dHT dx dx d

dx k d k Jkk U k U k U

t t

N x x
  


  


   

t t β

t x

 1

ˆ

ˆVariance of  can be approximated using sample residuals 

ˆ :

ˆ ˆ   ( )                                     (9)

NOTE: (8) requires totals of auxi

d

d d

dx k kk s

dGREG

k k k d

dGREG k l kl k l

k s l s

a

t

e y

V t a a a e e



 



 

 





t x

x β

liary variables in each domain 
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Practical variance estimator for 
direct GREG for planned domains 

Risto Lehtonen 

Approximate variance estimator of GREG: 

    
21ˆ ˆ ˆ

( 1)
d

A dGREG d k k dHTe

k sd d

V t n a e t
n n 

 


  (10) 

where  

   n is the total sample size and 1/k ka   (design weights) 

   ˆ
k k ke y y    are residuals in fitting the model 

  
0 1 1 2 2 ... , k d d k d k Jd Jk ky x x x         

d
k U  

   ˆ
d

dHTe k kk s
t a e


   is HT estimator of residual total in domain d 

NOTE: Similarity of (10) with HT variance estimator (4)  

for planned domains, but there is an important difference!  
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Simple variance estimator for SRS 

0 1

ˆSimple  of  under SRS sampling:

Assisting domain-specific model:   

ˆ ˆ ˆ ( )

where  is populati

GREG estimator: 

on size and  is sam

 

p

d d

dGREG

k d d

d
dGREG k k k

k U

k

kd

k

s

d d

t

y

N
t y y y

n

N n

x  

 

 

   

variance estimator

2

le size in domain  

ˆ ˆ ˆ ˆVariance estimator:    ( ) ( )(1 ˆ )   

ˆ ˆwhere ( ) is variance estimator of SRS-based (HT) estimator

ˆ     

and ˆ  is samp

d d

SRS dGREG SRS dHT dyx

SRS dHT

d
dHT k k k

k s k sd

dyx

d

V t V t

V t

N
t a y y

n





 

 

  

le correlation of y and x in domain d
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Direct GREG as calibration estimator 

Risto Lehtonen 

GREG  can be written as a weighted sum of observations 

incorporating so-called g-weights (Särndal et 

ˆ    ,                                    

al. 1992)

         (11)

where

:

  

d
dGREG k dk kk s

dk dk

t a g y

g I




 



 

 

1

2

is the domain membership indicator

-weights are used in variance es

ˆ ˆˆ  and  

   { } 

ˆ ˆ   ( )                      

timato

)

r

(12

d

d d

dk dx dx d k d i i ii s

dk d

dGREG k l kl dk k dl l

k s l s

I a

I I k U

V t a a e

g

a g g e





 


 

 

 





t t M x M x x
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Calibration property 
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GREG as calibration estimator 

   ˆ
d

dGREG k dk kk s
t a g y


  

where 
k dka g  are calibration weights 

 
Calibration for auxiliary x-variables involves: 
 

   ˆ ( )  for 1,...,
jd d

dGREG j k dk jk dx jkk s k U
t x a g x t x j J

 
      

 
NOTE: Calibration property: 
 

Applying calibration weights k dka g  for any x-variable reproduces  

the known population total 
jdx

t  of x-variable jx  in domain d 
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EXAMPLE 6 
Direct HT and direct GREG for planned 
domains 

• Comparison of HT and direct GREG  

• Examination whether auxiliary data improves efficiency or not 
 

• Population: N = 431,000 households 

• Household sampling: Stratified πPS (PPS-WOR) 

• Size variable in PPS-WOR: Number of household members 

• Strata: D = 12 NUTS4 regions (domains) 

• Planned type domains 

• Proportional allocation for the strata 

• Domain (stratum) sample sizes are assumed fixed 

• Total sample size: n = 1000 households 
 

• Source: Lehtonen & Veijanen (2009) pp. 228-230 
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Variables 

• Study variable y 

• Disposable household income 

 

• Auxiliary x-variables (known for all HHs) 

• EDUC: the number of household members who had higher 

education 

• EMP: the number of months in total the household members 

were employed during last year 

• Variables are derived from administrative registers 

•  NOTE: for this pedagogical exercise we assume access to the total 

parameter values of study variable y in the domains 

• This gives option to compare results with true values 
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Estimators of domain totals 

Risto Lehtonen 66 

 

 

   
2

Parameters: Doma

HT estimator with

in totals

 variance estimator 5

Direct linear GREG estimator with variance estimator 1

 , 1,...,12

ˆ

1ˆ ˆ ˆ
( 1

0

)

ˆ

d

d

d

d kk U

dHT k kk s

A dHT d k k dHT

k sd d

dGREG

t y d

t a y

V t n a y t
n n

t







 



 










 

   
2

ˆˆ ˆ

1ˆ ˆ ˆ
( 1)

d

dHT dx dx d

A dGREG d k k dHTe

k sd d

t

V t n a e t
n n 


 

 




t t β



Assisting models in GREG 

Risto Lehtonen 

Direct GREG estimator with linear fixed-effects 
assisting model and domain-specific terms: 
 

0 1 EMPk d d k ky       (column 2) 

 

0 1 2EMP EDUCk d d k d k ky         (column 3) 

 
The models are fitted separately in each domain 
 
Beta parameters are estimated using WLS with 
design weights 
 
NOTE: Domain-specific intercepts and slopes 
Therefore, this GREG estimator is direct 
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Measures of quality in Table 2 

Risto Lehtonen 

Absolute relative error in domain d:  

 ˆ ˆ( ) /
d d d d

ARE t t t t    

MARE in a domain group is the mean of absolute relative 
errors over domains in the group  
 
Coefficient of variation in domain d:  

 ˆ ˆ ˆc.v( ) s.e( ) /
d d d

t t t  

MCV in a domain group is the mean of coefficients of 
variation of the estimate, over domains in the group 
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Risto Lehtonen 

Table 2. Mean absolute relative error MARE (%) and mean coefficient of 
variation MCV (%) of direct HT and direct calibration (GREG) estimators of 
totals for minor, medium-sized and major domains by using various amounts 
of auxiliary information for planned domains. 

 

 
 
 
 

HT Direct GREG 

Auxiliary information 

1 
None 

2 
Domain sizes 

and 
domain totals 

of EMP  

3 
Domain sizes 
and domain 

totals of EMP 
and EDUC 

Domain 
sample size 

class 

 
MARE 

% 

 
MCV 

% 

 
MARE 

% 

 
MCV 

% 

 
MARE 

% 

 
MCV 

% 

Minor 

8 33dn   
 

11.5 

 
11.9 

 
5.8 

 
7.7 

 
6.4 

 
6.8 

Medium 

34 45dn   
 

7.6 

 
9.0 

 
3.7 

 
8.0 

 
3.6 

 
8.1 

Major 

46 277dn   
 

12.5 

 
5.2 

 
4.3 

 
4.7 

 
5.2 

 
3.7 
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Lessons learned – Example 6  
Planned domains 

• Domains are taken as independent sub-populations 

• Direct estimators are used 
 

• Estimation error 

• Mean absolute error MARE figures are smaller for GREGs when 

compared with HT, in all three domain sample size groups 

• Estimation accuracy (variance) 

• Mean coefficient of variation MCV figures tend to be smaller for 

both GREGs, when compared with HT 

•  GREG with more use of auxiliary data tends to be more 

accurate than the GREG with less use of auxiliary data 
 

• Incorporation of auxiliary data in the direct GREG estimation 

procedure makes sense! 
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Topic 5 INDIRECT GREG AND 
CALIBRATION 

• “Borrowing strength” in model-assisted methodology with 

indirect estimation procedures 
 

• Indirect linear GREG estimator for domain totals of 

continuous study variable 

• Variance estimators 

• Example 
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Indirect estimators 

• Recall definition 
 

• Indirect estimator uses y-values not only from the domain of 

interest itself but also outside the domain or from earlier time 

points 
 

• “Borrowing strength” from other domains (spatially)  

or in a temporal dimension 
 

• Borrowing strength can be exercised both in design-based 

SAE and model-based SAE 
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Indirect GREG estimator for domains - 1 

73 

1

, 1,...,

Assume known vector values of auxiliary x-data with  var

 of domain total para

iables 

    (1, ,... ) , 

Assi

meters

st

 

ing linear fixed-effects

 

 m

  

o

 
d

d kk U

k k Jk

t y d D

J

x x k U


 

 



Indirect GREG esti

x

mator

2

0 1

del:    

    , ( ) ,                                       (13)

( , ,..., )   beta coefficients 

 is estimated from the sample  by 

weig

Parameter

hted

 

 leas

k kk k k

J

y Var k U

s

  

  

   



x β

β common for all domains

β

1

t squares with weights 1/ :

ˆ   

k k

k k k k k k

k s k s

a

a a y





 



 
  

 
 β x x x
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Some notes on efficiency 

 The model (13) given by 

       

 is not domain specific but is specified as common model for 

all domains 
 

 This means borrowing strength for a given (possibly small) 

domain from other “similar” (possibly larger) domains 
 

 Efficiency improves over HT if the explanatory power of x-

variables in the model is good over the domains involving 

small residuals for every domain 

 

 NOTE: GREG estimator remains (nearly) design unbiased in 

a domain irrespective of the correctness of the model 
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Indirect GREG estimator for domains - 2 

75 

Fitted values 

ˆˆ    ,  

and sample residuals 

ˆ    , 

are incorporated into 

ˆ ˆ ˆ ˆ   ( ) ,  1,...,

NOTE: Thi

 

s GREG

d d d d

k k

k k k

dGREG k k k k k k k

k U k s k U k s

y k U

e y y k s

t y a y y y a e d D
   

 

  

        

x β

indirect GREG estimator 

 is indirect since all y-values in the sample 

contribute to the beta estimates

NOTE: Difference to direct GREG (7) is in the predictions!
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Examples of assisting models 
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0 1

01 1 02 2 0 1

:

Common model with  x-variables for all domains

   ... ,  

Domain-specific fixed intercepts and common slopes

   ... ...

k k J Jk k

k k k D Dk k J

J

y x x k U

y I I I x x

   

    

     

      

Linear fixed - effects models

0 1

, 

where { } 1 if , 0 otherwise

 with domain-specific random intercepts

   ( ) ... , , 1,...,   

Jk k

dk d d

k d k J Jk k d

k U

I I k U k U

y u x x k U d D



   

 

   

       

Linear mixed model
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GREG as calibration estimator 

77 

Indirect GREG  can be written as a weighted sum of observations 

incorporating  (g-w

ˆ                                                 

whe

eights) :

d d

k k dk

dGREG k k k dk kk s k s

w a gcalibr

t w y a g

ated weigh

y

ts

 



  

  1

is domain membership indicator

   suc

ˆˆre   are  g-weights

   { } 

1 if ,  0 otherwise

ˆ     NOTE: Extends over the whole sample 

NOTE: 

h that 

dk dk dx dx k

dk d

dk d

i i ii s

g I extended

I I k U

I k U

a s






  

 

 



t t M x

M x x

Cali holds for all x-variables ,  1,..., :

ˆ                     
j jd d

j

dx GREG k dk jk jk dxk s k U

x j J

t a g x x t
 



   

bration property 
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Variance estimator of indirect GREG with  
extended g-weights 

78 

 

  1

ˆ ˆ    ( )                        (14)

ˆwhere  are sample residuals

ˆ ˆˆ  

Extended g-weights  are used 

The who

   with

le sample

 

dGREG k l kl dk k dl l

k s l s

k k k

dk dk dx dx k i i ii s

dk

V t a a a g e g e

e y y

g I a

g

 





 

 


   



t t M x M x x

 ˆ ˆNOTE:  requires weights 1/  

where  are second-orde

 data set  is used to estimate variance

for given d

r inclusion probabilities

They are intractable for practical varian

oma

ce estim

in 

dGREG kl kl

kl

s

d

V t a 





ation
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More practical variance estimator 

79 

Approximate variance estimator of indirect GREG for unplanned  

domains by using extended residuals: 

    
2

ˆ ˆ ˆ /
1

U dGREG k dk dHTe

k s

n
V t a e t n

n 

 

  (15) 

where n is the total sample size and 1/k ka   (design weights) 

   ˆ{ }dk d k ke I k U y y     are extended residuals, where ˆ
k k ke y y   

NOTE: ˆ  if  and dk k de y k U k s     (Lehtonen & Pahkinen 2004 p. 202) 

   ˆ
d

dHTe k kk s
t a e


   is HT estimator of residual total in domain d 

Alternatively, it is possible to use in  ˆ ˆ
U dGREGV t  the extended domain 

variables { }dk d ky I k U y   (Lehtonen & Veijanen 2009 p. 234) 

Risto Lehtonen 



EXAMPLE 7: HT and GREG for 
planned and unplanned domains 

• Comparison of direct HT with direct and indirect GREG for 

planned and unplanned domains 
 
 

• Population: N = 431,000 households 
 

• Household sampling: 

• Planned domains: Stratified πPS (PPS-WOR) with household 

size as the size variable and domains as the strata 

• Unplanned domains: πPS (PPS-WOR, no stratification) 

• Size variable in PPS-WOR: Number of household members 
 

• Domains: D = 12 NUTS4 regions (domains) 

• Sample size: n = 1000 households 
 

• Lehtonen & Veijanen (2009) Section 4.2.  

Risto Lehtonen 80 



Estimators 

• Estimators of domain totals 
 

• HT estimator (1) with variance estimators (4) and (5) 
 

• Direct GREG estimator with assisting model (6) and variance 

estimator (10)  
 

• Indirect GREG estimator with assisting model (13) and variance 

estimator (15) 
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Assisting models in GREG 

Risto Lehtonen 

GREG estimator 

   ˆ ˆ ˆ( )
d d

dGREG k k k k

k U k s

t y a y y
 

     

is assisted by linear fixed-effects models 
 

Assisting model for direct  GREG 

   
0 1 EMP , k d d k k dy k U        

The model is fitted separately in each domain  
 

Assisting model in indirect GREG 

   0 1EMP , k k ky k U       

The model is fitted to the whole sample 
 

Beta parameter vectors are estimated with WLS 
using design weights 
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Measure of quality in Table 4 

Risto Lehtonen 

 
Coefficient of variation in domain d:  
 

 ˆ ˆ ˆc.v( ) s.e( ) /
d d d

t t t  

 
MCV in a domain group is the mean of coefficients of 
variation of the estimate, over domains in the group 

83 
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Table 3. Mean coefficient of variation MCV (%) of direct HT and 

direct and indirect GREG estimators of totals for minor, medium-
sized and major domains for planned and unplanned domains. 
 

 Planned domains Unplanned domains 

(a) 
HT 

(b) 
Direct 
GREG 

(c) 
HT 

(d) 
Indirect 
GREG 

Domain  
sample size  

class 

 
MCV 

% 

 
MCV 

% 

 
MCV 

% 

 
MCV 

% 

Minor 
8 33dn   

 
11.9 

 
7.7 

 
28.3 

 
9.0 

Medium 
34 45dn   

 
9.0 

 
8.0 

 
20.3 

 
8.1 

Major 
46 277dn   

 
5.2 

 
4.7 

 
9.6 

 
5.0 

Variance estimators: 

(a)    
21ˆ ˆ ˆ

( 1)
d

A dHT d k k dHT

k sd d

V t n a y t
n n 

 


  (c)    
21ˆ ˆ ˆ

( 1)
U dHT k dk dHT

k s

V t na y t
n n 

 

  

(b)    
21ˆ ˆ ˆ

( 1)
d

A dGREG d k k dHTe

k sd d

V t n a e t
n n 

 


  (d)    
21ˆ ˆ ˆ

( 1)
U dGREG k dk dHTe

k s

V t na e t
n n 

 

  

 



Lessons learned from  
EXAMPLES 6 & 7 

• Planned domains, direct estimators 

• GREG better than HT in terms of accuracy, in small domains in 

particular 

• Unplanned domains, indirect estimators 

• GREG much better than HT in terms of accuracy 

• Use of auxiliary data makes sense! 
 

• Planned vs. unplanned case 

• For HT, accuracy clearly better in planned domains case 

• For GREG, better accuracy in small planned domains 

• Stratification for important domains of interest makes sense! 

• An issue of the survey planning stage 
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Topic 6 EXTENDED GREG AND 
MODEL-ASSISTED CALIBRATION 

• Extended GREG and model calibration estimators 
 

• This far, our study variable was of continuous type and linear 

assisting models were used 

• Assisting generalized linear mixed models (GLMM) are needed for 

binary, polytomous and count variables, and for mixed model 

formulations 
 

• EXAMPLE 

•  GREG and model-assisted calibration estimators for the number of 

ILO unemployed in regions  

• Study variable is now polytomous with 3 classes:  

Employed, Unemployed, Not in labour force 

• Data: LFS sample data, unit-level auxiliary data from registers 

• Multinomial logistic mixed model as assisting model 
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Data requirements 

 Traditional linear GREG estimator and model-free 

calibration estimator for continuous study variable 
 Linear fixed-effects models are used 

 Unit-level x-vectors not necessarily needed 

 Known domain totals of x-variables only are needed 

 Often used in all data infrastructures but applicable in ”survey” 

countries in particular (current paradigm in Official statistics) 
 

 Extended GREG family estimators and model-assisted 

calibration estimators for other study variable types 
 Unit-level x-data are assumed for all units in population 

 Linear and generalized linear mixed models are used 

 Applicable in ”register” countries in particular 

 Active research & development in academic communities 

 

Risto Lehtonen 
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EXAMPLE 8: Assisting model in GREG and 
model-assisted calibration 

1 0 1

2 2

for continuous study variable 

     + , , 1,...,

where  (1, ,..., ) ,    ( , ,..., )  

 are domain-level random intercepts 

~ (0, ),  ~ (0, ), 

k k d k d

k k pk p

d

d u k

y

y u k U d D

x x

u

u N N u



  

  

   

  

Linear mixed model 

x β

x β

2and   from the sample data set  ( , MIXED)

Calculate

 and  independent

Estimate  

ˆ , 1,...,  and calculate fitted values    

ˆˆ ˆ   

 estimat

 ,  , 1,...,  

Used in linear m

es   

ix

d k

u

d

k k d d

u d D

y u k U d D

s







   

β

x β

lme4

ed model assisted GREG estimator (MGREG)

Lehtonen & Veijanen (1999), Lehtonen, Särndal and Veijanen (2003)
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EXAMPLE 9: Assisting model in GREG and 
model-assisted calibration 

for binary response variable 

exp( )
   ( )  

1 exp( )

Estimate  from the sample data set  b

ˆexp( )
ˆCalculate fitted values   ,   

ˆ1 exp( )

Used in 

y ML

k
m k

k

k
k

k

y

E y

y k

s

U







 



Logistic fixed - effects model 

x β

x β

β

x β

x β

logistic model assisted GREG estimator (LGREG) 

Lehtonen & Veijanen (1998)
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EXAMPLE 10: Assisting model in GREG and 
model-assisted calibration 

2

2

for binary response variable 

exp( )
    ( ) ,  , 1,...,

1 exp( )

where  are domain-level random intercepts, ~ (0, )

Estimate  and   from the sample d

k d
m k dd

k d

d d u

u

y

u
E y u k U d D

u

u u N 



 
  

 

Logistic mixed model 

x β

x β

β

ˆ , 1,...,  and calculate fitted values:    

ˆ ˆexp( )
ˆ   ,  , 1,...,  

ˆ ˆ1 exp( )

Used in logistic mixed model assisted GREG estimator 

ata set  ( , MIXED)

Calculate estimates   
d

k d
k d

k d

u d D

u
y k U d D

u

s



 
  

 

x β

x β

lme4

(MLGREG)

Lehtonen, Särndal & Veijanen (2005), Lehtonen & Veijanen (2009)
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Estimation of the model 

 GLMMs can be fitted in R by: 

 R packages nlme or lme4 (glmer function) using maximum 

likelihood 

 GLMMs with survey weights for unit and domain level can 

be fitted in SAS by: 

 Procedures GLIMMIX (using ML) or MIXED (using REML or ML) 

 R options for this purpose? 
 

 Some classical references 

 Generalized linear (fixed-effects) models (GLM) 

Nelder & Wedderburn (1972) JRSS-A 

McCullagh & Nelder (1982) Generalized Linear Models. Springer. 

 Generalized linear mixed models (GLMM) family models 

Demidenko (2005) Mixed Models: Theory and Applications. Wiley.  

Risto Lehtonen 
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GREG estimator assisted by GLMM 

 For an assisting GLMM for GREG the formulation of GREG 

estimator for domain total and mean or proportion remains the 

same. The difference is in obtaining the predicted y-values 

MGREG estimator for domain total  of continuous y-variable  

    Assisting model: Linear mixed model

ˆˆ ˆ    Predicted values:  , , 1,...,

MLGREG for domain proportion  of binary y-va

d

k k d d

d

t

y u k U d D

p

   x β

riable 

    Assisting model: Logistic mixed model: 

ˆ ˆexp( )
ˆ    Predicted values: ,  , 1,...,

ˆ ˆ1 exp( )

For MGREG and MLGREG the estimator is of the same form:

ˆ ˆ    
d

k d
k d

k d

dGREG k

k U

u
y k U d D

u

t y


 
  

 

 

x β

x β

ˆ( )
d

k k k

k s

a y y



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Calibration estimator assisted by GLMM 

• For an assisting GLMM for model calibration estimator, the 

formulation of the model-assisted calibration estimator for domain 

total and mean or proportion remains the same.  

The difference is in obtaining the predicted y-values 

 

 

Risto Lehtonen 
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ˆ   

 method-specific for element  

Weights are constructed to satisfy calibration equations:

ˆ     ,   

where (

d

d d d

d k kk s

k

k k k d k

k s k U k U

k

t w y

w k

w N y



  



 
   

 





  

Calibration estimators

z z

z

calibration weight  

1

ˆ1, ) ,  , 1,...,

ˆˆ ˆFitted values ( ( )) with (1, ,..., ) , 

k d d

k k d k k Jk

y s s U d D

y f x x k U

   

    x β u x



EXAMPLE 11: Poverty rate 

• Source: Lehtonen & Veijanen (2016a)  
 

• The aim: Estimation of poverty rate for regions by using 

GREG estimators assisted by logistic fixed-effects model 

(LGREG estimator, Lehtonen & Veijanen 1998) and 

logistic mixed model (MLGREG, Lehtonen, Särndal & 

Veijanen 2003) 
 

• Methods: 

• See separate paper 

 

• NOTE: A related paper by Molina & Rao (2010) 

Risto Lehtonen 
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Poverty rate: Results 

Risto Lehtonen 
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Mini Course, Poznan 28 January 2017 

Table 4 Absolute relative bias (ARB %) and relative root men squared error 
(RRMSE %) of estimators of poverty rate in a design-based simulation experiment 
of 1,000 SRSWOR samples.  
 

 
 

 
 
Estimator 

ARB (%) RRMSE (%) 

Expected domain 
sample size 

Expected domain sample 
size 

5-12 12-25  25-151 5-12 12-25  25-151 

 
Direct estimator 
 

 

HT 
 

1.7 
 

2.2 
 

0.9 
 

83.7 
 

60.1 
 

38.9 

Indirect estimators 
Assisting models 
(a) Fixed-effects 
logistic model with 
domain-specific 
intercepts 

 
LGREG  

 
1.8 

 
1.9 

 
0.9 

 
83.7 

 
59.9 

 
38.5 

(b) Mixed logistic 
model with domain-
specific random 
intercepts 

 
MLGREG  

 
2.0 

 
1.8 

 
0.9 

 
72.4 

 
55.0 

 
36.8 

 



Lessons learned - EXAMPLE 11 

• All estimators were nearly design unbiased as expected 
 

• Model choice had larger effect on RRMSE: 
 

 

• Fixed-effects logistic model with domain-specific intercepts did not 

yield good results with the model-assisted LGREG estimator  
 

• The reason might be instable estimation, in the group of smallest 

domains in particular  
 

• Note: There are 36 fixed intercept parameters to be estimated! 
 

• This result suggests that a fixed-effects model with domain-specific 

parameters might not be a good idea if the number of domains is 

large 
 

• The best results were obtained with the logistic mixed model 

assisted MLGREG estimator 

• This estimator outperformed clearly the HT and LGREG estimators. 
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Generalized regression GREG: 
EXAMPLES from literature 

• Simulation results and empirical examples statistical 

properties of the extended family GREG estimators 
 

• Lehtonen & Veijanen (1998)  

• GREG assisted by logistic fixed-effects model (LGREG) 

• Lehtonen & Veijanen (1999) 

• GREG assisted by linear mixed model 

• Lehtonen, Särndal and Veijanen (2003, 2005) 

• GREG assisted by linear mixed model (MGREG) 

• GREG assisted by logistic mixed model (MLGREG) 

• Lehtonen and Veijanen (2009) 

• GREG assisted by linear and logistic mixed models 

• Lehtonen, R., Veijanen, A., Myrskylä, M. and Valaste, M. (2011) 

• AMELI project: GREG applications  to poverty indicators 
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Model-assisted calibration 

 Idea: Extension of model-free calibration beyond linear models 

for continuous study variables to cover nonlinear models for 

continuous variables and GLMs and GLMMs for binary, 

polytomous and count type study variables 
 E.g. Linear mixed models, Logistic mixed models  

 

 Calibration principle in domain estimation:  

Calibration of totals of model predictions estimated from sample 

to agree with the population totals of model predictions 

 NOTE: difference w.r.t. model-free calibration 
 

 Model calibration:  

Wu and Sitter (2001) 

Montanari and Ranalli (2005, 2009) 
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Model-assisted calibration 
procedure for domains 

• Modelling phase:  

• Model specification 

 Models with no domain-specific terms 

 Models with (fixed or random) domain-specific terms 

• The model is fitted using the entire sample data  

• “Borrowing strength” from other (similar) domains) 

• Predicted y-values are computed for every population element 

by using the estimated model parameters and auxiliary x-data 
 

• Calibration phase: 

• Calibration of the sample total of predicted y-variable values to 

the population level, domain level or an intermediate 

(regional, spatial, neighborhood) level   
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Model-assisted calibration: 
EXAMPLES from literature 

• Simulation results and empirical examples on statistical 

properties of model-assisted calibration estimators 
 

• Lehtonen & Veijanen (2012)  

• Calibration and GREG assisted by logistic fixed-effects model 

and logistic mixed model 

• Lehtonen & Veijanen (2016a,b) 

• Calibration and GREG assisted by logistic mixed model 

 

• Lehtonen, R., Veijanen, A., Myrskylä, M. and Valaste, M. (2011) 

• AMELI project: Model-assisted calibration applied to poverty 

indicators 

Risto Lehtonen 100 



NOTE on computation 

• Software for calibration and GREG 
 

• SAS macro language programs by SCB, Statistics Canada, INSEE 

 

• Zardetto (2015)  

 ISTAT: R package ReGenesees 

http://www.istat.it/it/files/2014/05/Zardetto-jos-2015-0013.pdf 
 

• R package sampling (Matei & Tille 2916) 

https://cran.r-project.org/web/packages/sampling/sampling.pdf 
 

• R package icarus 

  https://cran.r-project.org/web/packages/icarus/icarus.pdf 
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CASE STUDY 1:  
Estimation of mean of “Perceived 
income” for regional domains 

• Comparison of regional mean estimates using direct HT 

and indirect GREG assisted with linear fixed-effects and 

mixed models 

• Data sources: EU-SILC data and statistical registers of 

Statistics Finland 

 

• Master Thesis in Statistics 

Nico Maunula (2012). Small Area Estimation Methods with Application 

to Perceived Income for Domains in Finland in 2009. Master’s Thesis, 

University of Helsinki. (In Finnish)  
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Study setting 

• Target population: N about 4,3 million 

• Regions (domains): D = 70 NUTS4 areas 

• Sizes of regions vary (2000 – 1 million): 
 

• Stratified unequal probability sampling 

• Sample size n = 11,000 households 

• Domains are of unplanned type 

Smallest domain sample size: 10 persons 

Largest domain sample size: 2425 persons 
 

• CAPI interviews with household head as respondent 
 

• Reweighting to adjust for unit nonresponse 

• Model-free calibration for final weights  

Risto Lehtonen 
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Auxiliary data 

• Auxiliary data are taken from statistical registers covering the 

target population  

• Registers maintained by Statistics Finland 

 

• Auxiliary data were merged with sample survey data at the unit 

level by using unique identification keys 

• Personal ID number  

Risto Lehtonen 
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Study variable 

• HS120: Ability to make ends meet 
 

• Represents ”experienced” (perceived) income (contrasted with 

“actual” income) 

• A subjective wellbeing indicator  
 

• Ordinal level measurement with 6 levels 

• 1 = lowest, 6 = highest 

• Treated as continuous variable in modelling 

• Mean = 4.3 in SILC data 
 

• NOTE: Why “perceived income” This is because it is not 

available in administrative registers! 

Risto Lehtonen 
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EXAMPLE: Poverty mapping 
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Auxiliary variables  

• Variables (for HH head) from statistical registers  

• Gender 

• Age group (4 age groups) 

• Education (3 classes)  

• Actual (register) income 

• Socio-economic status (6 classes) 

• Stage in life of household-dwelling unit (5 classes) 

 

• Categorical variables are transformed to indicator (dummy) 

variables 

• 16 x-variables in the regression model 

• All variables statistically significant 

• R squared = 15% 

Risto Lehtonen 
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Models 

2

0 1 16 16

0 1 16 16

Linear fixed-effects model

   ... , , , (0, )

where beta coefficients are common for all domains

Linear mixed model

    ... , , 1,...,70

with doma

k k k k k

k d k k k d

y x x k U N

y u x x k U d

     

   

     

       

2 2

in-level random intercepts  and common fixed 

slope parameters

(0, ), (0, ),  and  independent

d

d u k d k

u

u N N u   
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Estimation of assisting models 

0 1 16 16

0

GREG assisted by linear fixed-effects model 

Model fitted by LS

Predicted values 

ˆ ˆ ˆˆ   ... , 

MGREG assisted by linear mixed model 

Model fitted by REML

Predicted values

ˆˆ ˆ   

k k k

k d

y x x k U

y u

  



    

 
1 16 16
ˆ ˆ... , , 1,...,

k k d
x x k U d D     
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Estimators of regional means 

Population mean for domain : y / ,  1,...,70

HT estimator for domain means y

ˆ   ,  1,...,70 

ˆˆ   y  /

wnere  are known domain sizes in population

GREG estimators for do

d

d d d

d

dHT k kk s

dHT dHT d

d

d t N d

t w y d

t N

N



 

 





main means y

ˆ ˆ ˆ   ( ) ,  1,...,70

ˆˆ   y  /

where  are final calibrated weights (g-weights)

d d

d

dGREG k k k kk U k s

dGREG dGREG d

k k k

t y w y y d

t N

w a g

 
   





 
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Variance estimators  
(unplanned domains) 

   

 

   

2

2

HT estimator for domain means

ˆ ˆ ˆˆ   /

ˆ                 /
( 1)

where { }  are extended y-variables

GREG estimators for domain means

ˆ ˆ ˆˆ   /

U dHT U dHT d

k dk dHT

k sd

dk d k

U dGREG U dGREG d

V y V t N

n
w y t n

N n

y I k U y

V y V t N





 


 





 

2

2

2
ˆ                    /

( 1)

ˆwhere { }  are extended residuals

k dk dHTe

k sd

dk d k k

n
w e t n

N n

e I k U y y



 


  


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Quality indicators 

   

 
 

ˆStandard error of domain mean estimate 

ˆˆ ˆ   s.e ,  1,...,70

ˆCoefficient of variation of domain mean estimate 

ˆs.e
ˆ   cv   1,...,70

ˆ

Mean cv calculated in three domain size groups

d

d d

d

d

d

d

y

y V y d

y

y
y d

y

 

 
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CASE STUDY 2: Model-based 
EBLUP and weighted EBLUP 

• QUESTION: How to account for unequal probability 

sampling and weighting in model-based EBLUP 

estimation? 
 

• For example: 

• Stratified sampling with non-proportional allocation 

• PPS type sampling designs 
 

• The role of survey weights? 
 

• The role of design variables in the model? 
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Multilevel models with survey 
weights 

• Rabe-Hesketh (2006) Multilevel modelling of complex survey data. JRSS-A 

169 (805–827). 

• http://www.gllamm.org/JRSSAsurvey_06.pdf 

 

• Carle A.C. (2009) Fitting multilevel models in complex survey data with design 

weights: Recommendations. BMC Medical Research Methodology. 
• https://bmcmedresmethodol.biomedcentral.com/articles/10.1186/1471-2288-9-49 

 

• Example of using survey design weights in lmer: This is an example of how to 

use survey design weights with linear mixed models using the lmer() function. 

It follows the logic of[Carle 2009 

• https://rpubs.com/corey_sparks/27276 

 

• West B. (2016) Fitting Weighted Multilevel Models to Complex Sample Survey 

Data in SAS: A Case Study 
http://www.misug.org/uploads/8/1/9/1/8191072/bwest_weighted_multilevel_models.pdf 
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Options considered 

• PPS-WOR sampling design (πPS design)  

• Continuous study variable y 

• Linear mixed model with random intercepts 
 

• Model-based EBLUP 

• Inclusion of PPS size variable in the model 
 

• Pseudo model-based EBLUP = EBLUPW 

• Incorporation of design weights in the estimation procedure of the 

linear mixed model 
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Simulation experiments - 1 
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Population N = 1 million elements 
 

D = 100 domains 
 

Size of domain 
d

U  is proportional to exp( )
d

q  

where 
dq  is simulated from Uniform(0,2.9) 

 

   47 minor domains (-69 elements) 
   19 medium-sized domains (70-119) 
   34 major domains (120-) 



Simulation experiments - 2 
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PPS size variable 
1

x : Uniform(1,11) 

Variable 
2

x  (unrelated to the sampling design):  

Uniform(-5,5)  
 

Random intercept 0du and random slopes 1d
u  and 2du : 

Multinormal distribution  

0( ) 1dVar u  , 1 2( ) ( ) 0.125d dVar u Var u   

0 1 0 2( , ) ( , ) 0.5d d d dCorr u u Corr u u   , 1 2( , ) 0d dCorr u u   

Residual   followed N(0,100) 



Simulation experiments - 3 
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Values of the y-variable were generated as 
  

   
0 0 1 1 1 2 2 2

0 1 2

( ) ( ) ( )

    1

k d d k d k ky u u x u x   

  

      

  
 

 
Note: Both random intercepts and random slopes 
 
Correlations of the variables in the population 
 

1( , ) 0.441corr y x   

2( , ) 0.446corr y x   

 



Simulation experiments - 4 
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Population N = 1,000,000 
 
Sample n = 10,000 
 
Monte Carlo experiments 
 
K = 1000 independent PPS-WOR samples 
 

Inclusion probabilities: 1 1
/

k k kk U
nx x


   

Weights 1/k ka   varied between 54.5 and 599.8 

 



Models and estimators 
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0 0 1

EBLUP estimator of domain totals - basic form

ˆ ˆ   ,  1,...,100

Fitted models: 

Special cases of linear mixed models with random

intercepts:             ,  

Models fit

d
dEBLUP kk U

k d k k d

t y d

y u x k U  


 

    



0 0 1

ted by REML or pseudo REML (REML-W)

ˆ ˆˆ ˆPredicted values:   , 

, 1,...,100

k d k

d

y u x

k U d

   

 



Pseudo EBLUP: mixed model with survey 
weights 
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Linear mixed model (matrix form)        y Xβ Zu ε  
 

Pseudo EBLUP (EBLUPW) estimators are derived by incorporating 

design weights 
k

a  in ML-W and REML-W estimation procedures of 

model parameters by using HT estimators for certain matrix 
products (Domest and RDomest programs of Ari Veijanen) 
 

Modification of matrix products of X , y , Z  matrix (whose columns 

are domain indicators), and e  (the vector of residuals):  

Matrix product A B  ( , , , ,A B X Z y e ) was replaced by  

AWB , where W  is the diagonal matrix of design weights k
a  



Quality measures 
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1000

1

1000
2

1

Absolute relative bias (ARB) for domain 

1ˆ ˆARB( ) ( ) /
1000

Relative root mean squared error (RRMSE)

1ˆ ˆRRMSE( ) ( ( ) ) /
1000

Average ARB and average RRMSE is computed

in 

d d v d d

v

d d v d d

v

d

t t s t t

t t s t t





 

 





each domain sample size class
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Lessons learned – CASE STUDY 2 

• Mean ARB results: Bias can be large for misspecified model 
 

• Mean RRMSE results:  

Squared bias component can still dominate the MSE  

• Can be difficult to obtain proper confidence intervals 
 

• Unequal probability sampling of PPS type can be successfully 

accounted for in EBLUP with two options: 

• Inclusion of the size variable into the model for model-based 

EBLUP (Model 2) 

• Use of pseudo EBLUP (EBLUPW) by incorporating design 

weights in the estimation procedure of the model (all models 

considered here) 

Risto Lehtonen 126 



Selected literature 

• Battese, G.E., Harter, R.M., and Fuller, W.A. (1988), An Error-
Components Model for Prediction of County Crop Areas Using 
Survey and Satellite Data, JASA 80, 28–36. 

• Berger, Y.G. (2004). A simple variance estimator for unequal 
probability sampling without  replacement. Journal of Applied 
Statistics 31, 305-315. 

• Berger, Y.G. (2005). Variance estimation with highly stratified 
sampling designs with unequal probabilities. Australian & New 
Zealand Journal of Statistics 47, 365-373. 

• Berger, Y.G. and C.J. Skinner (2005). A jackknife variance 
estimator for unequal probability sampling. Journal of the Royal 
Statistical Society, Series B, 67, 79-89. 

• Datta G. (2009).  Model-based approach to small area 
estimation.  Chapter 32 in Rao C.R. and Pfeffermann D. (Eds.). 
Handbook of Statistics. Sample Surveys: Inference and Analysis. 
Vol. 29B. New York: Elsevier. 

Risto Lehtonen 127 



Selected literature (contd.) 

• Deville, J.-C. and C.-E. Särndal (1992). Calibration estimators in 
survey sampling. Journal of the American Statistical Association 
87, 376-382. 

• Estevao V. M. and Särndal C.-E. (1999) The use of auxiliary 
information in design-based estimation for domains. Survey 
Methodology  2, 213-221. 

• Fay, R.E., and Herriot, R.A. (1979). Estimates of income for small 
places: an application of James-Stein procedure to census data. 
JASA 74, 269–277. 

• Ghosh, M., and Rao, J.N.K. (1994). Small area estimation: an 
appraisal. Statistical Science 9, 55–93. 

• Hájek, J. (1964). Asymptotic theory of rejective sampling with 
varying probabilities from a finite population. Annals of 
Mathematical Statistics 35, 1491-1523. 

• Jiang J. and Lahiri P. (2006). Mixed model prediction and small 
area estimation. TEST 15, 1–96. 

Risto Lehtonen 
128 



Selected literature (contd.) 

• Kott, P.S. (2006). Delete-a-group variance estimation for the 
general regression estimator under Poisson sampling. Journal of 
Official Statistics 22, 759-767.-14. 

• Lehtonen R., Särndal C.-E. and Veijanen, A. (2003). The effect of 
model choice in estimation for domains, including small domains. 
Survey Methodology, 29, 33–44. 

• Lehtonen R., Särndal C.-E. and Veijanen A. (2005). Does the 
model matter? Comparing model-assisted and model-dependent 
estimators of class frequencies for domains. Statistics in 
Transition, 7, 649–673. 

• Lehtonen R. and Pahkinen E. (2004). Practical Methods for 
Design and Analysis of Complex Surveys. Second Edition. 
Chichester: John Wiley & Sons. Chapter 6. 

• Lehtonen R. and Veijanen A. (2009). Design-based methods of 
estimation for domains and small areas. Chapter 31 in Rao C.R. 
and Pfeffermann D. (Eds.). Handbook of Statistics. Sample 
Surveys: Inference and Analysis. Vol. 29B. New York: Elsevier. 

 Risto Lehtonen 129 



Selected literature (contd.) 

• Lehtonen, R. and Veijanen, A. (1998). Logistic generalized 
regression estimators. Survey Methodology 24, 51-55. 

• Lehtonen, R., and Veijanen, A. (1999). Domain estimation with 
logistic generalized regression and related estimators. IASS 
Satellite Conference on Small Area Estimation, Riga: Latvian 
Council of Science, 121-128. 

• Lehtonen, R. and Veijanen, A. (2012). Small area poverty 
estimation by model calibration. Journal of the Indian Society of 
Agricultural Statistics, 66, 125-133. 

• Lehtonen and Veijanen (2014). Small area estimation of poverty 
rate by model calibration and "hybrid" calibration. NORDSTAT 
2014 Conference, June 2014, Turku. 

• Lehtonen R. and Veijanen A. (2016a) Design-based methods to 
small area estimation and calibration approach. In: Pratesi M. 
(Ed.) Analysis of Poverty Data by Small Area Estimation. 
Chichester: Wiley.  

Risto Lehtonen 130 



Selected literature (contd.) 

• Lehtonen R. and Veijanen A. (2016b) Estimation of poverty rate 
and quintile share ratio for domains and small areas. In:  Alleva 
G. and Giommi A. (Eds.) Topics in Theoretical and Applied 
Statistics. New York: Springer.  

• Lehtonen, R., Veijanen, A., Myrskylä, M. and Valaste, M. (2011). 
Small Area Estimation of Indicators on Poverty and Social 
Exclusion. AMELI WP2 Deliverable 2.2. Available at: 
http://www.uni-trier.de/index.php?id=24676&L=2 

• Molina, I. and Rao, J.N.K. (2010). Small area estimation of 
poverty indicators. Canadian Journal of Statistics, Volume 38, 
Issue 3, 369–385. 

• Montanari, G. E. and M. G. Ranalli (2005). Nonparametric model 
calibration estimation in survey sampling. Journal of the 
American Statistical Association 100, 1429-1442. 

 

 

Risto Lehtonen 131 

http://www.uni-trier.de/index.php?id=24676&L=2
http://www.uni-trier.de/index.php?id=24676&L=2
http://www.uni-trier.de/index.php?id=24676&L=2


Selected literature (contd.) 

• Montanari, G.E. and Ranalli, M.G. (2009). Multiple and ridge 
model calibration. Proceedings of Workshop on Calibration and 
Estimation in Surveys 2009. Statistics Canada. 

• Münnich, R., Zins, S., Alfons, A., Bruch, C., Filzmoser, P., Graf, 
M., Hulliger, B., Kolb, J.-P., Lehtonen, R., Lussman, D., Meraner, 
A., Myrskylä, M., Nedyalkova, D., Shoch, T., Templ, M., Valaste, 
M. and Veijanen, A. (2011): Policy Recommendations and 
Methodological Report. Research Project Report WP10 of the 
EU/FP7 AMELI Project. 

• Münnich, R., Burgard J.P. and Vogt M. (2009). Small area 
estimation for population counts in the German Census 2011. JSM 
2009, Section on Survey Research Methods. 

• Pfeffermann D. (2013). New important developments in small 
area estimation. Statistical Science 28, 40–68. 

• Rao J.N.K. (2003). Small Area Estimation. New York: John Wiley & 
Sons. 

 
Risto Lehtonen 132 



Selected literature (contd.) 

• Särndal, C.-E. (1996). Efficient estimators with simple variance in 
unequal probability sampling. Journal of the American Statistical 
Association 91, 1289-1300. 

• Särndal, C.-E. (2007). The calibration approach in survey theory 
and practice. Survey Methodology 33, 99–119. 

• Särndal, C.-E., Swensson, B. and Wretman, J. (1992). Model 
assisted survey sampling. New York: Springer. 

• Singh, M.P., J. Gambino and H.J. Mantel (1994). Issues and 
strategies for small area data. Survey Methodology 20, 3-14. 

• Torabi, M. and J.N.K. Rao (2008). Small area estimation under a 
two-level model. Survey Methodology 34, 11-17. 

• Wu, C. and Sitter, R.R. (2001). A model-calibration approach to 
using complete auxiliary information from survey data. JASA 96, 
185-193. 

• Wu C. (2003) Optimal calibration estimators in survey sampling. 
Biometrika 90, 937–9 

 
Risto Lehtonen 133 



Selected literature (contd.) 

• Zardetto D. (2015). ReGenesees: an Advanced R System for 
Calibration, Estimation and Sampling Error Assessment in Complex 
Sample Surveys. JOS 31, 177–203. 

 http://dx.doi.org/10.1515/JOS-2015-0013 

 

 

Risto Lehtonen 134 


