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“¥&. Lecture topics

Py

° Topic 1: Introduction

* Topic 2: Basic concepts and approaches

* Topic 3: Traditional (direct) estimators for domains

* Topic 4: Direct GREG and calibration

* Topic 5: Indirect GREG estimators

* Topic 6: Extended GREG and model-assisted calibration
* CASE STUDY 1: SAE in the SILC data

* CASE STUDY 2: EBLUP example
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¥ Topic 1 INTRODUCTION

° Introduction to small area estimation (SAE)
* Motivation:

what Is small area estimation?
why SAE?

« Estimation tasks in SAE

 Main literature

Risto Lehtonen



“#&. Small area estimation:
World-wide trend

° An increasing need in society for reliable statistics for
regional and other population subgroups or domains,
Including sub-populations with small sample sizes

* SAE: Challenge for official statistics describing the society

« SAIPE (U.S.) Allocation of federal state funds to small local areas
based on model-based estimates obtained by SAE methods

* SAE: Challenge for scientific research
* Good review on SAE research: Pfeffermann (2013)
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http://www.census.gov/did/www/saipe/

‘.Q. Lively SAE Research under EU’s
" Framework Programmes

* Small area estimation research under Framework
Programmes (FPs) in Europe

* Actors: Universities & NSIs

- EURAREA Project (2001-2004), EU/FP5 |r§r;1}sls§f
Poverty Data by

AMELI Project (2008-2011), EU/FP7 Sl e Betin
SAMPLE Project (2008-2011), EU/FP7 VT, |
InGRID Project (2013-2017), EU/FP7

* Main results of AMELI and SAMPLE:

* Pratesi M. (Ed.) (2016) Analysis of Poverty Data by Small Area
Estimation. Chichester: Wiley.
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http://www.ons.gov.uk/ons/guide-method/method-quality/general-methodology/spatial-analysis-and-modelling/eurarea/index.html
https://www.uni-trier.de/index.php?id=25157
http://cordis.europa.eu/project/rcn/92010_en.html
http://cordis.europa.eu/project/rcn/108538_en.html

* Series of SAE Conferences

e EWORSAE European Working Group on Small
Area Estimation http://sae.wzr.pl/
SAE1993 (Warsaw, Poland)
SAE2000 (Riga, Latvia)
SAE2005 (University of Jyvaskyla, Finland)
SAE2007 (University of Pisa, Italy)
SAE2009 (University of M. Hernandez, Elche, Spain)
SAE2011 (University of Trier, Germany)
SAE2013 (Bangkok, Thailand)
SAE2014 (Poznan University of Economics, Poland)
SAE2015 (Santiago, Chile)
SAE2016 (Maastricht, The Netherlands)
SAE2017 (Paris, France)
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http://sae.wzr.pl/
http://www.stat.jyu.fi/sae2005/index.html
http://sae2017.ensai.fr/
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‘*\ Main materials for this course

handbook of
statistics 29B

Model-assisted SAE:

Lehtonen R. & Veijanen A. (2009). Design-based methods of
estimation for domains and small areas. Chapter 31 in Rao C.R.
and Pfeffermann D. (Eds.). Handbook of Statistics. Sample
Surveys: Inference and Analysis. Vol. 29B. New York: Elsevier.

Lehtonen R. & Pahkinen E. (2004). Practical Methods for Design o
and Analysis of Complex Surveys. Second Edition. Chichester: for Designand

Analysis of

John Wiley & Sons. Chapter 6. Comls Sy

Second Edition

Lehtonen R. & Veijanen A. Model-assisted methods to small area
estimation of poverty indicators. In: Pratesi M. (Ed.) (2016).
Analysis of Poverty Data by Small Area Estimation. Wiley.

Model-based SAE: SMALL AREA
Rao J.N.K. (2003). Small Area Estimation. New York: EST'!M)"J.LTION
John Wiley & Sons. (Second edition Rao & Molina 2015) -
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Ch31-N53124.pdf
Ch31-N53124.pdf
Ch31-N53124.pdf
http://eu.wiley.com/WileyCDA/WileyTitle/productCd-0470847697.html

°* Domains of interest

« Well-defined (non-
overlapping) population
subgroups

* Regional areas

« Sex-age groups within
regions

« Grouping of enterprises into
domains according to the
type of industry

* Estimation for domains

« Estimation of population

guantities for the desired
domains of interest

Risto Lehtonen

Estimation for domains and small

« Small area estimation SAE
« Estimation for domains
whose sample size is small

or very small (even zero)

* Alternative SAE definition
(Partha Lahir):

- Small area = Domain of interest
for which the sample size is not
adequate to produce reliable
direct estimates



¥ EXAMPLE 1: The world by income

The world by income, FY2017
to World Bank of 2015 GNI per capita
(currenl US dollar, Atlas method)

- Low Income ($1,025 or less)
Lower middle income ($1,026-$4,035)
Upper middle income ($4,036-$12,475)

- High income ($12,476 or more)

Russian Federation

PR

No data
Kazakhstan
mFanp\a
Georgia pzar- .of Korea
Armenia. bajan Turkmenis
Irkey
Irag Islamic Rep.
of Iran
Kuwait !
Libya
e e R
Mexico e W,
BaHza -4
Guatemala |
El Salvauur
cnstamcaJ *—— Guyana Guines:
R.B. de
Panamia szma’ﬁ/‘su""ﬂ"‘ﬁ SIsnaLsnna,
French Guiana (Fr) Liberl Tog
Golombia Maldives
Equatorial Gumaaﬁl\_
Ecuator Gabon -
Dem.Rep. \ wirny
'ézl:‘-g(g 15 of Congo o Solomon
Islands
Paru Brazil - [N \Tuval\i
y A <\
i [Mauritius| 1 L N
Caribbean Inset [ #IH
WW N 5) Vanuatu *
Paraguay \K
Wew \ "
-Swaziland Glfeda{;rl‘j
South "
l Africa Lesotho
Chilel Argentina Uruguay
Bosnia and
o grzegoving. =y
> Trinidad and
RL.B. de Venezuela B Tobago
Note: The World Bank as low-il , lower-middle-i pp iddle-income, or

high-income based on gross national income (GNI) per caplta For more inforrnalion 'see https://datahelpdesk
.worldbank.org/knowledgebase/articles/906519-world-bank-country-and-lending-groups.

e http://data.worldbank.org/products/wdi-maps
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http://data.worldbank.org/products/wdi-maps
http://data.worldbank.org/products/wdi-maps
http://data.worldbank.org/products/wdi-maps

‘.'*\ EXAMPLE 2: Disposable income per
. capita by NUTS3 regions in the EU

A4

Figure 1. Disposable income by

Disposable income, (FRY
by NUTS 2 regions, 2007 (') . 5 ; :
T - NUTS 2 regions in 2007 in the
w = European Union
m
il

Martinigoe
:DH_\HQ Source:  Eurostat  Regional Yearbook

CmEom

e 2010, p.93, Section on Household
Accounts. Information about the metadata
s available at

hith:/ [ ebp.eurostat.ec.europa.en/ cache/IT
Y SDDS/EN/reg _ecohh esms.him

© EuroGeograprics Assoclation, for Ine admnistratve boundanes
Cantography: Ewvosta — GISCO, 032010

More recent: 2003-2013

http://ec.europa.eu/eurostat/tgm/mapToolClosed.do?tab=map&init=1&plugin=1&language
=en&pcode=tgs00026&toolbox=types
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http://ec.europa.eu/eurostat/tgm/mapToolClosed.do?tab=map&init=1&plugin=1&language=en&pcode=tgs00026&toolbox=types
http://ec.europa.eu/eurostat/tgm/mapToolClosed.do?tab=map&init=1&plugin=1&language=en&pcode=tgs00026&toolbox=types

i EXAMPLE 3: Poverty map for Estonia

World Bank 2014 - Regional poverty rates based on SILC data

Districts of Tallinn, |

At-risk-o f-poverty rate, %
[ ] 59-149 (250 — Borderofgroup
[ ] 150-249 (138) —— Border ofrural municipality ~ © City with municipal status

] 25.0-404 (63) — Border of county O Rural municipality with an area smaller than 10 km*
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Components of typical estimation
- task -1

* Domains of interest

« Breakdown of population into sub-populations (areas, domains)
« The number of domains of interest is usually large

* Study variable(s)

* Target parameters for the domains
* Totals
* Means
* Ratios
* Percentiles, medians
* Poverty indicators
 AROPE indicators, ...

Risto Lehtonen 12



s Components of typical estimation
« task -2

* Data sources

Sample survey data source
Unit-level values of study variable

Auxiliary data sources

Alternatives: Domain-level (area-level) aggregates of auxiliary
variables or unit-level values of auxiliary variables x that can be
merged with sample data at the unit level

NOTE: Availability depends on the statistical data infrastructure

* Statistical models

Example: Generalized linear mixed models GLMM family

Alternatives: Domain-level (area-level) models or unit-level
models

Risto Lehtonen



s Components of typical estimation
- task-3

* Estimators of domain parameters
* Model-assisted design-based estimators

« Examples: Generalized regression (GREG) estimators and
calibration estimators

« Model-based estimators

« Examples: Empirical best linear unbiased predictor (EBLUP) and
empirical best predictor (EBP) type estimators

* Variance estimators, MSE estimators
Computation, graphical illustration

* Quality assurance

* Publication

Risto Lehtonen 14



3. Topic 2 BASIC CONCEPTS &

APPROACHES

Two main SAE approaches:
Design-based and model-based SAE

Two different domain structures:
Planned and unplanned domains

Two different types of estimators for domains:
Direct and indirect estimators

“Borrowing strength”

Simple examples

Risto Lehtonen
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i Approaches for domain estimation
- and SAE

* Design-based approach
* Model-based approach

* Additional variants
« Bayesian methods: Empirical Bayes, Hierarchical Bayes
« Poverty mapping: World Bank, Peter Lanjouw, Chris Elbers,...

* PovMap Software
http://iresearch.worldbank.org/PovMap/PovMap2/PovMap2Main.asp

- Spatial microsimulation:
Rahman A & Harding A. (2016) Small Area Estimation and
Microsimulation Modeling. Chapman and Hall/CRC.

Risto Lehtonen 16


http://iresearch.worldbank.org/PovMap/PovMap2/PovMap2Main.asp

- Main methods for domain
- estimation and SAE

* Design-based methods
* Horvitz-Thompson (HT) estimator
« Hajek estimator
* Generalized regression (GREG) estimators
* Model-free calibration estimators
* Model-assisted calibration estimators

° Model-based methods
« Synthetic (SYN) estimators
- Empirical best linear unbiased predictor (EBLUP) estimators
« Empirical best predictor (EBP) type estimators

Risto Lehtonen 17



Basic small area estimation approaches

A. Design- B. Indirect estimation
based "Borrowing strength" from other domains
. by using models and auxiliary data
direct (unplanned domains)
estimation

Domains are B1. Design-
considered as

R based B2. Model-based estimation
populations (strata, model-
planned domains) assisted
estimation
Unit-level models | Area-level models
Horvitz- Extended
Thompson GREG SYN Fay-Herriot
Hajék Model-assisted EBLUP
Model-free calibration EB
calibration
Direct GREG

Risto Lehtonen
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Design-based
approach

The randomness is introduced
by the sampling design

Statistical properties (design
bias, design accuracy) are
evaluated under the sampling
design

Examples of estimators
Horvitz-Thompson (HT)

Model-free calibration methods

Model-assisted methods e.qg.
generalized regression (GREG)
assisted by linear model (Sarndal
etal. 1992)

Overview: see Lehtonen &
Veijanen (2009)

Risto Lehtonen

Model-based
approach

The randomness is introduced
by an assumed
superpopulation model

Statistical properties (model
bias, model accuracy) are
evaluated under the model

Examples of estimators
Empirical best linear unbiased
predictor (EBLUP) estimator with
area-level model e.qg. Fay-Herriot
model

Nested error linear regression
model with unit-level data (Battese
et al. 1988)

Synthetic estimators

Overview: see Datta (2009)
19



“S&. EXAMPLES of estimators under SRS

Model - based synthetic estimator of population total t = Zyk

keU
SYN Z yk

keU

Design - based GREG estimator of population total t = Zyk

keU
tores = 2 Vi + 2.8 Vi — Vi)

keU kes
J. = B, + BX,, keU, are y-values predicted by linear model
= [, + Xy +&,KeU
X, are auxiliary variable values known for all k e U
S, and j, are LS estimates of beta parameters
a =1/ is design weight for element k in sample s c U

7, =N/ N is SRS inclusion probability for element k in population U
Risto Lehtonen 20



NOTE: Role of sampling complexities

= Design-based approach: = Model-based approach:
= Estimators are constructed = Accounting for sampling
such that the properties of design properties is not

necessarily anissue BUT is

the sampling design are >Sdll _
possible if desired

accounted for

- Stratification, clustering, EXAMPLES:

weighting | - Pseudo EBLUP (Rao 2003)
* EXAMPLE: HT estimator - Mixed models in accounting
i Y. for clustering & stratification
tr =D 7= aY, * Incorporation of stratification

kes Tk kes
7, Inclusion probability
a =1/, design weight « NOTE: No consensus within
statistical communities

« NOTE: CASE STUDY 2

variables in the model

for element k in sample s

Risto Lehtonen 21



Key properties of estimators - 1

° Key properties of design-based estimators

(Nearly) design unbiased (by construction principle)
Models are used as assisting tools in inference
Estimators remain unbiased even under a wrong model
Accuracy can be good with a strong model

Accuracy can be poor if domain sample size is small

* Key properties of model-based estimators

Design biased (by construction principle)

Inference relies on the correctness of the model

Accuracy can be good with a strong model, even for small
domains

Accuracy can be poor with an incorrect model, irrespective of
domain sample size

Risto Lehtonen 22



* Key properties of estimators - 2

Table 1

Source: Lehtonen and Veijanen (2009)

Design-based properties of model-assisted and model-dependent estimators for domains and small areas

Design-based model-assisted methods

Model-dependent methods

GREG and calibration estimators

Synthetic and EBLUP estimators

Bias

Precision (Variance)

Accuracy (MSE)

Confidence intervals

Design unbiased (approximately) by the
construction principle

Variance may be large for small domains
Variance tends to decrease with
increasing domain sample size

MSE = Varance (or nearly so)

Valid design-based intervals can be
constructed

Design biased

Bias does not necessarily
approach zero with increasing
domain sample size

Variance can be small even for

small domains

Variance tends to decrease with
increasing domain sample size

MSE = Variance + squared bias
Accuracy can be poor if the bias
is substantial

Valid design-based intervals not
necessarily obtained

Risto Lehtonen
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& NOTE on the role of models

= The role of model differs in model-assisted design-based
estimators and model-based estimators

= Model assisted design-based methods use models as
assisting tools
» Benefit: design bias near to zero
= Cost to be paid: poor accuracy for small domains

= Model-based methods rely solely on models
= Benefit: improved accuracy for small domains
= Cost to be paid: the risk of nonzero design bias

= NOTE: Trade-off between bias and accuracy!

= NOTE: “All models are wrong but some are useful”
(George Box 1978)

Risto Lehtonen
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EXAMPLE 4. Lehtonen, R., Sarndal, C.-E. and Veijanen, A. (2005): Does the

“",;_, ‘. \7\* . . .
madet matter? Comparing model-assisted and model-dependent estimators of class
" frequencies for domains. Statistics in Transition 7, 649-673.
MLGREG—S8C in domain 31 MLSYN—SC in domain 31

Frequency (%) Frequency (%)
J o5

FIGURE 1 Distribution of relative error (%) of design-based MLGREG (left-hand side) and model-

based MLSYN (right-hand side) estimators of domain totals of binary study variable in domain 31

of the generated LFS population. (Design-based simulation experiment, 1,000 independent simple
random samples of 12,000 elements from population of three million elements and 84 domains)

Relative error of an estimator t, for sample S,, i =1...,1000, in domain d is defined as
Risto Lehtonen RE(t,) = (t,(s)-t,)/t,, d =1...,.84




Lessons learned — EXAMPLE 4

= MLGREG: design-based generalized regression (GREG) estimator
assisted by logistic mixed model

= MLSYN: model-based synthetic estimator using the same logistic
mixed model formulation as GREG

= QUESTIONS:
= Which one of the two estimators indicates smaller design bias?
= Which one of the estimators indicates smaller design variance?

= NOTE: Design bias refers to the difference between the expected value (or
mean) of the distribution (in repeated sampling from the population) of the
estimator and the true parameter value

= Design variance refers to the spread of the distribution of the estimator around
its expectation

_ 26
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¥ Important concepts

°* Type of domains of interest
« Planned domains / Unplanned domains

° Type of domain estimator
 Direct / Indirect

* Availability of auxiliary (population) data
« Unit-level / Aggregate-level (area-level)

° Type of model
 Linear model / Non-linear model
* Fixed-effects model / Mixed model

°* Accuracy measures
* Variance estimators / MSE estimators

Risto Lehtonen
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Two main domain structures

* Planned domains

The most important domains are defined as strata in the
sampling design (stratified sampling)

The strata are independent sub-populations

Domain sample sizes are fixed in advance

Domain sample sizes are controlled by allocation scheme
Small sample sizes can be avoided if desired

°* Unplanned domains

Domain structure is not connected to the sampling design
Domain sample sizes are not fixed but are random

Small domain sample sizes can occur

Typical in SAE practice

NOTE: Similarity of unplanned domains with post-stratifiction, see
Lehtonen & Pahkinen (2004) pp. 89-92

28
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Planned domains Unplanned domains

U Population U Population

U, Population domaind, d =1...,D A single sample s is drawn

Domains = Strata scU Sample

Several ( =D) independent samples U, Population domaind, d =1...,D
Sample s, cU, drawn in domain d s, =snU, Sample falling in domain d
Sample size n, is fixed by sampling Sample size n, in domain d is random
design

Risto Lehtonen 29



‘¥ Direct and indirect estimation

Direct estimation for domains

* Direct domain estimator uses values of the variable of
Interest y only from the time period of interest and only
from units in the domain of interest
(Federal Committee on Statistical Methodology, 1993)

« Often in connection to planned domain structures

Indirect estimation for domains

 Indirect domain estimator uses values of the variable of
Interest y from a domain and/or time period other than the
domain and time period of interest

« Often in connection to unplanned domain structures

Risto Lehtonen 30



‘*\ Domain type and estimator type 1

Direct Indirect
Typical
Planned set-up More rarely
Typical
Unplanned More rarely set-up

Risto Lehtonen
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“Borrowing strength” in SAE

* Indirect estimators are attempting to “borrow strength” from
other (similar) domains (spatial dimension) and/or from
previous time points (temporal dimension)

° For domains with small sample size, this is a well justified
goal — Why?

* The concept of “borrowing strength” is often used in model-

based small area estimation
 E.g. Rao & Molina (2015)

= Borrowing strength also is used for design-based model

assisted estimators
= E.g. Lehtonen & Veijanen (2009)
= See EXAMPLE 11

Risto Lehtonen
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+ Direct and indirect GREG

Assume continuous y-variable and one continuous auxiliary x-variable
Domains of interest U, d =1,...,D

Assisting linear fixed - effects models in two cases:

a) Planned domains case: Y, =B % +¢&, keUy, d=1...,D
b) Unplanned domains case: vy, =%, +¢,, keU

NOTE: Intercept parameters g,, = 3, = 0

NOTE: Models a) and b) are different. In what essential way?

For both domain types, let us construct a GREG estimator
of domain total of y-variablet, = > vy, d=1...D

. 33
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‘*‘ a) Direct GREG estimator for domains

Assisting model: y, = g,x, +¢., keU,, d =1...,D

: ~ t - ~
By noting that 8, = = and y, = 8,X. we have:
y' d Kk d 'k

dxHT

tarar = O Vi + . AV = Vi)

keUy kesy
_t thT (t _t )
dHT dx dxHT
tdxHT
t
=t, x=-- ,d=1..,D
tdxHT

which Is standard textbook form of ratio estimator
Why this GREG estimator is direct?

NOTE: Auxiliary information needed: x-totals t, for domains

34
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‘*‘ b) Indirect GREG estimator for domains

Assisting model: y, = X, +¢., keU

~n

By noting that 3 = tEHT and y, = fx, we have

XHT
lire = Z Yi + Zak(yk -Y)
keUy kesg

”n

t

_f HT .
=tgur + '[A (tdx _tdxHT)
XHT

which is standard textbook form of regression estimator
Why this GREG estimator is indirect?
NOTE: Auxiliary information needed: x-totals t, for domains

_ 35
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. Lessons learned - EXAMPLE 5

= Which one of the two GREG estimators would YOU prefer?
a) Ratio estimator
b) Regression estimator

= Why?

= Further , which one of the two GREG estimators, the ratio
estimator or the regression estimator, aims at “borrowing
strength” for domain d from other domains?

. 36
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i Topic 3 TRADITIONAL DIRECT
- ESTIMATORS FOR DOMAINS

Definitions and notation
Why totals are important?

Estimation of domain totals for planned and
unplanned domains

Unconditional and conditional approach
Horvitz-Thompson estimator
Variance estimation — different options

Risto Lehtonen 37



& Some definitions and notation

Fixed and finite population U ={1,2,...,k,...,N}

Inclusion probability: An observation K is included in a sample s
with probability 7z, =P {k € s}
Design weight: a, =1/ 7,

Sample membership indicator: | =I{k es} =1if k €s, O otherwise
Expectation of sample membership indicator E(l ) = 7,

Probability of including both elements k and | (k =1):
r, =E(./1) with inverse a, =1/ 7, (a, =a, when k=1)

The covariance of |, and |, is Cov(l ,l) =7, — 7 7,

Risto Lehtonen 38



‘*‘ Estimation of domain totals

Estimation of totals
ty =D, Yoo d=1....D
of variable of interest y for D non-overlapping domains

U,cu,d=12...,d,..,D,
with (known or unknown) domain sizes N,

NOTE: For unknown N, an estimator
Ng=>  a =Y _ 1/z isoften used

Risto Lehtonen
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“_ - Why domain totals are important?

Totals are basic and the simplest descriptive statistics for

continuous (or binary) study variables

Many other, more complex statistic are functions of totals

tdy Zkeud Yk

Domain ratio: R, =—*+=

tdz ZkeUd Zk
. Lt L ay
Estimator: R, = Y Zk g K7K
tdz Zkesd

Domain mean: y, =t, /N,

Estimator: y, =t /N, or y,=t, /N,

Risto Lehtonen
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Estimation for planned domains

Sample s is divided into subsamples s,, d =1...,D

Planned domains:
Stratified sampling with domains = strata

B The population domains U, are taken as separate
subpopulations i.e. strata

B Domain sizes N, in domains U, are assumed known

B Sample sizes ng in domain samples s, < U, are fixed in
In the allocation scheme of the stratified sampling design

B Standard estimators for the entire population are
applicable for the domains as such, because the domains
are taken as independent sub-populations

Risto Lehtonen 41



.. NOTE: Sample allocation for planned
- domains

e Stratified sampling with a suitable allocation scheme is
advisable in practical applications, in order to obtain control
over the domain sample sizes

Bankier, M.D. (1988). Power allocations: Determining sample sizes for
subnational areas. The American Statistician 42, 174-177.

Choudhry, G.H., Rao, J.N.K. & Hidiroglou, M.A. (2012). On sample
allocation for effective domain estimation. Survey Methodology 38, 23-29.

Falorsi, P.D. & Righi, P. (2008). A balanced sampling approach for multi-
way stratification for small area estimation. Survey Methodology 34, 223—-
234.

Molefe W.B. & Clark R.G. (2015). Model-assisted optimal allocation for
planned domain using composite estimation. Survey Methodology 41, 377—
387.

_ 42
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" Estimation for unplanned domains

Unplanned domains: A single sample s of size n
IS drawn from population U

Domain samples are s, =s NU,
RECALL: Domain sample sizes n, are considered random

Extended variable of interest y, defined as:
Yo =Y, for keU, and y, =0 for k ¢ U,

In other words, y, ={k eU,}y,

Because t; =) Y, =D, Vg  We can estimate

kEUd

domain total of y by estimating the population total of y

Risto Lehtonen 43



. NOTE: Unconditional and conditional
inference

° Inthe unconditional approach, the contribution of extra
variance caused by random domain sample sizes can be
Incorporated in variance expressions and computation

« Variance estimates for unplanned domains are often used

* Inthe conditional approach, inference is conditional on the
realized sample and domain sample sizes are considered as
fixed quantities

« Variance estimators for planned domains are often used
* Note again the similarity with post-stratification

Lehtonen & Pahkinen (2004) p. 90
Lehtonen & Veljanen (2009) p. 224
Coquet & Lesage (2012)

Rao J.N.K. (1999)

44
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- Horvitz-Thompson estimator of
« domain totals

Horvitz-Thompson (HT) estimator (expansion estimator)
IS the basic design-based direct estimator of the domain

total t, =Zkeud Y., d=1..D:
{dHT = Z WYl 7 = ZYk [ 7, = Zakyk (1)

keUy kesy kesy
HT estimates of domain totals are additive: they sum up
to the HT estimator t;; = Zkesakyk of the population total

t= ZkeU Yi (2)

As E(l,) =, the HT estimator is design unbiased for t_

NOTE: More detailed treatment of HT (and GREG) under planned domains:

See Lehtonen & Veijanen (2009)
45
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¥ variance estimation for HT - 1

Standard variance estimator for t,,.

Y (f;lHT ) = Z Z(akal —ay )ykyl (3)

kesy lesy

under planned domains:

where a, =1/r, and a, =1/,

NOTE: Variance estimator (3) is somewhat impractical for many
unequal probability sampling designs because the second-order

inclusion probabilities 7,, are needed

Approximations have been developed for standard sampling
designs to be used in practical situations

Risto Lehtonen 46



¥ variance estimation for HT - 2

Variance estimation for planned domains in practice

Approximations to z,, for fixed- size without-replacement (WOR)
probability proportional-to-size (TTPS) designs :

B Hajek (1964) and Berger (2004, 2005) approximation
B Sarndal (1996) approximation

Alternative methods: Resampling
B Berger and Skinner (2005) jackknife variance estimator
B Kott (2006) delete-a-group jackknife variance estimator

see Lehtonen & Veijanen (2009) page 226-227

NOTE: For some design types r,, =77, K #1

Risto Lehtonen
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‘*‘ Variance estimation for HT - 3

Planned domains: Conditional variance estimator assuming fixed
domain sample sizes

Approximate estimator:

n

A N 2
Va (thT B n,(ny —1) Kesg (ndakyk o ) X

where n, refers to domain sample size

For example, SAS Procedure SURVEYMEANS uses (4)
for planned type domain structures

Risto Lehtonen 48



¥ variance estimation for HT - 4

Unplanned domains: Unconditional variance estimator
by accounting for random domain sample sizes

Approximate variance estimator by using extended domain
variables y,, :

\7U (deT ) - m kze;,(nakydk - tAdHT )2 1 (5)

where n is the total sample size

NOTE: e.g. SAS procedure SURVEYMEANS uses (5)
for unplanned cases

NOTE: Extended domain variables are y, =l{k eU,}y,
Recall: y, =y, ifk eU,, 0 otherwise
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Topic 4 DIRECT GREG AND
- MODEL-FREE CALIBRATION

* Origins of the traditional GREG and calibration
* Components of estimation procedure

* Basic idea: Difference estimator

* Population fit regression estimator

* Direct GREG estimator for domain totals of continuous
study variable

* Variance estimators and approximations
° Example
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& Traditional linear GREG estimator

®" GREG = Generalized regression estimator

= Robinson P.M. & Sarndal C.-E. (1983) Asymptotic properties of the
generalized regression estimator in probability sampling, Sankhya
Ser. B, 45, 240-248.

= Séarndal, C.E. (1980) On mr-inverse weighting versus best linear
unbiased weighting in probability sampling. Biometrika 67, 639—650.

= Sarndal C.-E., Swensson B. & Wretman J. (1992) Model-Assisted
Survey Sampling. New York: Springer.
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i Traditional model-free calibration
-  estimator

= Calibration estimators

= Deville, J.-C. & Sarndal, C.-E. (1992). Calibration estimators in
survey sampling. JASA 87, 376—-382.

= Estevao V.M. & Sarndal C.-E. (1999) The use of auxiliary
iInformation in design-based estimation for domains. Survey
Methodology 2, 213-221.

= Sarndal C.-E. (2007) The calibration approach in survey theory and
practice. Survey Methodology 33, 99-119.

= Kim J.K. & Park M. (2009) Calibration estimation in survey sampling
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Components of GREG estimation
procedure

e Sample survey data
« Access to unit-level sample survey data

° Model specification and model fitting
« Specification of the linear fixed-effects model
 Estimation of model parameters from the sample data

° Auxiliary data
* Access to domain-level or unit-level population data

* Estimation of domain totals: Two alternatives
 Estimation with domain-level auxiliary data
« Estimation with unit-level auxiliary data
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" Population fit regression estimator -1

Difference estimator of population total t of y (Sarndal 1980)
Let us assume known values y, that are close to population
valuesy,, k e U. We write the population total as

t=D ¥V =D Ve + D (Y — V¢

keU keU keU

In practice, sample values y,, k € s only are available!
Difference estimator: We estimate the second sum using HT:

tADIFF = Zyg T Zak(yk ~Yy), where a =1/r,

keU kes
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¥ population fit regression estimator -2

In practice, no such y., k e U, exist! Let us use modelling...
Consider regression superpopulation model

Y, =X.B+¢&, Var(g)=o0o; =c° (constant)
where x, = (1, X,.,...,X; ) IS the vector of auxiliary x-variables
B=(f,,L,--5) Is the vector of regression coefficients

If we had access to population values y, €U then

a LS (least squares) estimator ﬁLS of B is:

e (o

keU keU
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" population fit regression estimator -3

Using B, and x,, k €U, we calculate fitted values y, = X/,
for all k e U. We define population fit regression estimator :

{REG = ZYK +Zak(yk -Y), where a =1/r,

keU kes

Because we only have access to sample values y, €s,
we estimate 8 by plugging in HT estimators for both

sum components of B, for weighted LS estimator:

éWLS = (Zakxka j (Zakxkykj

kes kes

and compute fitted y-values y, = x.B,, . for all'y, eU
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‘*\ Direct GREG estimator for domains -1

Direct GREG estimator of domain total t, = Z Y

kEUd

Assisting linear fixed-effects model:
Y, =X By +&., kelU, (6)

Domain-specific parameter B, is estimated using
weighted LS in each domain:

éWLSd = éd = (Z akxka) Z A X, Yy

k eSd k eSd

where weights are a, =1/ r,
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“¥&. Direct GREG estimator for domains -2
Using beta estimates of (6), fitted values 'y, = x[fid, k eU,,
and residuals e, =y, —V,, k €s,, are incorporated into
direct GREG estimator

tAdGREG = Z Y, + Za‘k(yk -Y)= Z Vi + Zakek (7)

keUy kesg keUg kesg

First part: Synthetic (SYN) estimator

Second part: HT estimator of residual total Z E,

keUy
(adjustment for design bias of SYN estimator)
NOTE: (7) operates with unit-level x-data from population
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" Traditional regression estimator

Rearranging the terms of GREG: traditional regression estimator

thREG = thT + (tdx - tolx) Bd’ (8)

!
where t, Zkeud X, = (Nd’ZkeUd xlk,...,Zkeud xJk)

th - Zkesd akxk

can be approximated using sample residuals

Variance of t

dGREG
€ =Y~ 'de :
Vi ({iesec ) = 2 2 @3 ~a)e.e (9)

NOTE: (8) requires totals of auxiliary variables in each domain
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i Practical variance estimator for
* direct GREG for planned domains

Approximate variance estimator of GREG:

\7A (fdGREG) = n, (nj 1) keZSd (nda‘kek - deTe )2 (10)

where
n is the total sample size and a, =1/ x, (design weights)

e =Y, -y, areresiduals in fitting the model

Yy = Bog + BaXu + BogXor oot Big Xy + &, KeU,

tre = Zkes a.e, Is HT estimator of residual total in domain d

NOTE: Similarity of (10) with HT variance estimator (4)
for planned domains, but there is an important difference!
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Simple variance estimator for SRS

Simple variance estimator of fdGREG under SRS sampling:

Assisting domain-specific model: = Log + BuX. + &
GREG estimator: AdGREG Z Y+ Ny Z Y = Yi)
keUy d kesy

where N, is population size and n, is sample size in domain d
Variance estimator: Vg (tyeres) = Vars (tarr )(1= Do)

where \7SRS (t,..) is variance estimator of SRS-based (HT) estimator

tar = D &Y\ = "Zyk

kESd d keSd

and p,,, is sample correlation of y and x in domain d
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Direct GREG as calibration estimator

GREG can be written as a weighted sum of observations
Incorporating so-called g-weights (Sarndal et al. 1992).

tiores = 2ves, BJaYic (11)

where g, =1, +1,, (tdx— ) My, and M, = > X!

= | ||

+« =l{k €U,} is the domain membership indicator
g-weights are used in variance estimator

~n n

V, (fiores ) = 2 2. (88 —8,)048,9a€ (12)

kesy lesgy
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GREG as calibration estimator

licrec = Zkesd A G Y
where a, g, are calibration weights

Calibration for auxiliary x-variables involves:

ticres (X;) = Zkesd A Gy Xy =Ty, = ZkeUd X; forj=1...J

NOTE: Calibration property:

Applying calibration weights a, g, for any x-variable reproduces
the known population total tay, of x-variable x; in domain d

Risto Lehtonen 63



“¥. EXAMPLE 6
Direct HT and direct GREG for planned
domains

* Comparison of HT and direct GREG
* Examination whether auxiliary data improves efficiency or not

* Population: N = 431,000 households
* Household sampling: Stratified TPS (PPS-WOR)
* Size variable in PPS-WOR: Number of household members
e Strata: D =12 NUTS4 regions (domains)
* Planned type domains
* Proportional allocation for the strata
« Domain (stratum) sample sizes are assumed fixed
* Total sample size: n = 1000 households

* Source: Lehtonen & Veijanen (2009) pp. 228-230
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Variables

e Study variable y

» Disposable household income

* Auxiliary x-variables (known for all HHS)

- EDUC: the number of household members who had higher
education

« EMP: the number of months in total the household members
were employed during last year

« Variables are derived from administrative registers

®* NOTE: for this pedagogical exercise we assume access to the total
parameter values of study variable y in the domains

° This gives option to compare results with true values
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‘* Estimators of domain totals

HT estimator with variance estimator (5)

Direct linear GREG estimator with variance estimator (10)

Parameters: Domain totals t; = > y,, d =1...,12

~n

Lyt = Zkesd A Yy

Vallar )=, T 2 e o)
d\"'d

k GSd

fdGREG - {dHT + (tdx - fdx )l éd

n

Vi(fies )= 7o T (nare ~fore )
d\"'d

k GSd

Risto Lehtonen

66



T Assisting models in GREG

Direct GREG estimator with linear fixed-effects
assisting model and domain-specific terms:

Y, = By + B,EMP, + &, (column 2)
Y, = By, + B,EMP, + B, EDUC, +¢_ (column 3)

The models are fitted separately in each domain

Beta parameters are estimated using WLS with
design weights

NOTE: Domain-specific intercepts and slopes
Therefore, this GREG estimator is direct

Risto Lehtonen
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“#. Measures of quality in Table 2

Absolute relative error in domain d:
ARE(t,) = ffy —t,| /1,

MARE in a domain group is the mean of absolute relative
errors over domains in the group

Coefficient of variation in domain d:
c.v(t,) =s.e(t,)/t,

MCYV in a domain group is the mean of coefficients of
variation of the estimate, over domains in the group
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_Table 2. Mean absolute relative error MARE (%) and mean coefficient of
- variation MCV (%) of direct HT and direct calibration (GREG) estimators of

totals for minor, medium-sized and major domains by using various amounts
of auxiliary information for planned domains.

HT Direct GREG
Auxiliary information
1 2 3
None Domain sizes Domain sizes
and and domain
domain totals totals of EMP
of EMP and EDUC
Domain
sample size | MARE | MCV | MARE | MCV | MARE | MCV
class % % % % % %
Minor
8<n, <33 11.5| 11.9 5.8 7.7 6.4 6.8
Medium
34<n, <45 7.6 9.0 3.7 8.0 3.6 8.1
Major
46<n, <277 12.5 52 4.3 4.7 5.2 3.7

Risto Lehtonen
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Lessons learned — Example 6
Planned domains

* Domains are taken as independent sub-populations
* Direct estimators are used

* Estimation error

« Mean absolute error MARE figures are smaller for GREGs when
compared with HT, in all three domain sample size groups

° Estimation accuracy (variance)

« Mean coefficient of variation MCV figures tend to be smaller for
both GREGSs, when compared with HT

GREG with more use of auxiliary data tends to be more
accurate than the GREG with less use of auxiliary data

° Incorporation of auxiliary data in the direct GREG estimation
procedure makes sense!
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Topic 5 INDIRECT GREG AND
- CALIBRATION

* “Borrowing strength” in model-assisted methodology with
Indirect estimation procedures

* |ndirect linear GREG estimator for domain totals of
continuous study variable

* Variance estimators
° Example
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& Indirect estimators

* Recall definition

° Indirect estimator uses y-values not only from the domain of
Interest itself but also outside the domain or from earlier time
points

* “Borrowing strength” from other domains (spatially)
or in a temporal dimension

° Borrowing strength can be exercised both in design-based
SAE and model-based SAE
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“¥&. Indirect GREG estimator for domains - 1

Indirect GREG estimator of domain total parameters

t, = Zkeud Y., d=1..D
Assume known vector values of auxiliary x-data with J variables

X, =L Xy,...X, ), KeU
Assisting linear fixed-effects model:

Y, =X.B+¢g, Var(g)=0° keU (13)
B=(8,p..-.5,) beta coefficients common for all domains
Parameter B is estimated from the sample s by
weighted least squares with weights a, =1/ 7, :

-1
B= (Zakxkaj Zakxkyk

kes kes
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'Q}j":

. Some notes on efficiency

1}7

= The model (13) given by
Y, =X.B+¢&
IS not domain specific but is specified as common model for
all domains

= This means borrowing strength for a given (possibly small)
domain from other “similar” (possibly larger) domains

= Efficiency improves over HT Iif the explanatory power of x-
variables in the model is good over the domains involving
small residuals for every domain

= NOTE: GREG estimator remains (nearly) design unbiased in
a domain irrespective of the correctness of the model
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“&. Indirect GREG estimator for domains - 2

Fitted values
Yy, =x.B, k eU
and sample residuals
e =Y.~ Y. kes
are incorporated into indirect GREG estimator

{dGREG = Z yAk T Zak(yk _yAk) = Z Yk + Zakek, d=1...,D

kEUd kESd kEUd kESd

NOTE: This GREG is indirect since all y-values in the sample
contribute to the beta estimates
NOTE: Difference to direct GREG (7) is in the predictions!
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& Examples of assisting models

Linear fixed - effects models:
Common model with J x-variables for all domains

Y. =B, + BX +...+ BX, +&,keU

Domain-specific fixed intercepts and common slopes

Ye = 1801|1k +1802|2k +"-+IBODIDk "‘:lek +"'+IBJXJk + & keU
where |, ={k eU, }=11f k eU,, O otherwise

Linear mixed model with domain-specific random intercepts
Y, =(B,+U,)+ X +...+ B,X, +&,keU,,d=1....D
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¥ GREG as calibration estimator

Indirect GREG can be written as a weighted sum of observations
iIncorporating calibrated weights (g-weights) w, =a,g,,:

Licrec = ZkeSdeyk = Zkesd A Gk Y

where g, =1, +(th —fdx) I\A/I‘lxk are extended g-weights

l,, =!{k €U} Is domain membership indicator
suchthatl, =1ifk eU,, O otherwise

~n

M=) _axx; NOTE: Extends over the whole sample s

le

NOTE: Calibration property holds for all x-variables x;, j =1...,J:

~n

tdijREG Zkesd akgdk jk keU, jk tdxj
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Variance estimator of indirect GREG with
. extended g-weights

\7 (tAdGREG) = Zz(akal —a )gdkekgdlel (14)

kes les

where e, =y, —y, are sample residuals

Oy =l + (tdx —fdx) M™x, with M = > axX
Extended g-weights g, are used

The whole sample data set s Is used to estimate variance
for given domain d

NOTE: V (fdGREG) requires weights a,, =1/ 7,

where 7, are second-order inclusion probabilities
They are intractable for practical variance estimation

Risto Lehtonen
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More practical variance estimator

Approximate variance estimator of indirect GREG for unplanned
domains by using extended residuals:

n ~n

Vi (fionee ) = 2o (@ ~fare /1) (15)

kes

where n is the total sample size and a, =1/ z, (design weights)
e, =l{keU,}y, -y, are extended residuals, where e, =y, -V,

NOTE: e, =-V, ifk ¢U, and k €s (Lehtonen & Pahkinen 2004 p. 202)

~

e = Z ces, B Is HT estimator of residual total in domain d

Alternatively, it is possible to use in V (t the extended domain

dGREG )

variables y, =I{k eU,}y, (Lehtonen & Veijanen 2009 p. 234)
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w3 EXAMPLE 7: HT and GREG for
* planned and unplanned domains

* Comparison of direct HT with direct and indirect GREG for
planned and unplanned domains

* Population: N = 431,000 households

°* Household sampling:

* Planned domains: Stratified mPS (PPS-WOR) with household
size as the size variable and domains as the strata

* Unplanned domains: mPS (PPS-WOR, no stratification)

* Sjze variable in PPS-WOR: Number of household members

* Domains: D =12 NUTS4 regions (domains)
e Sample size: n = 1000 households

° Lehtonen & Veijanen (2009) Section 4.2.

Risto Lehtonen 80



* Estimators of domain totals

« HT estimator (1) with variance estimators (4) and (5)

« Direct GREG estimator with assisting model (6) and variance
estimator (10)

 Indirect GREG estimator with assisting model (13) and variance
estimator (15)

Risto Lehtonen
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Assisting models in GREG

GREG estimator
lycrec = Z Y t Z a, (Y, —Yi)

keUy kesy
IS assisted by linear fixed-effects models

Assisting model for direct GREG
= Loy + B,EMP, + ¢, k €U,
The model is fitted separately in each domain

Assisting model in indirect GREG
=p,+ PEMP, +¢, keU
The model is fitted to the whole sample

Beta parameter vectors are estimated with WLS
using design weights

Risto Lehtonen
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‘* Measure of quality in Table 4

Coefficient of variation in domain d:
c.v(t,)=s.e(t,)/t,

MCYV in a domain group Is the mean of coefficients of
variation of the estimate, over domains in the group

Risto Lehtonen
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Table 3. Mean coefficient of variation MCV (%) of direct HT and
direct and indirect GREG estimators of totals for minor, medium-
sized and major domains for planned and unplanned domains.

Planned domains

Unplanned domains

(a) (b) (c) (d)
HT Direct HT Indirect
GREG GREG
Domain
sample size MCV MCV MCV MCV
class % % % %
Minor
8<n, <33 11.9 7.7 28.3 9.0
Medium
34sny <45 9.0 8.0 20.3 8.1
Major
46=n, <277 5.2 4.7 0.6 5.0

Variance estimators;

(@) V, i) -

(b) \’/\A (fdGREG) =

> (@i ~tan ) (©) Vo (forr ) =

n (nd - 1) kesy

Z( aE dHTe) (d) V (dGREG)

d - l) kesy

n(n-1

n(n-1)

Z(nakydk o tAdHT )2

kes

Z(nakedk - {dHTe )2
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Lessons learned from
EXAMPLES 6 & 7

* Planned domains, direct estimators

* GREG better than HT in terms of accuracy, in small domains in
particular

* Unplanned domains, indirect estimators
 GREG much better than HT in terms of accuracy
* Use of auxiliary data makes sense!

°* Planned vs. unplanned case
* For HT, accuracy clearly better in planned domains case
* For GREG, better accuracy in small planned domains

e Stratification for important domains of interest makes sense!
* An issue of the survey planning stage

Risto Lehtonen
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3. Topic 6 EXTENDED GREG AND
*  MODEL-ASSISTED CALIBRATION

Extended GREG and model calibration estimators

This far, our study variable was of continuous type and linear
assisting models were used

Assisting generalized linear mixed models (GLMM) are needed for
binary, polytomous and count variables, and for mixed model
formulations

EXAMPLE

GREG and model-assisted calibration estimators for the number of
ILO unemployed in regions

Study variable is now polytomous with 3 classes:
Employed, Unemployed, Not in labour force

Data: LFS sample data, unit-level auxiliary data from registers
Multinomial logistic mixed model as assisting model
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~ Data requirements

= Traditional linear GREG estimator and model-free
calibration estimator for continuous study variable
= Linear fixed-effects models are used
= Unit-level x-vectors not necessarily needed
= Known domain totals of x-variables only are needed
= Often used in all data infrastructures but applicable in "survey”
countries in particular (current paradigm in Official statistics)

= Extended GREG family estimators and model-assisted

calibration estimators for other study variable types
= Unit-level x-data are assumed for all units in population
= Linear and generalized linear mixed models are used
= Applicable in "register” countries in particular
= Active research & development in academic communities
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k. EXAMPLE 8: Assisting model in GREG and
- model-assisted calibration
Linear mixed model for continuous study variable y
V., =XB+u, +¢,keU,,d=1..D
where x, =L Xy,...X, ), B=(5Lyu-8,)
u, are domain-level random intercepts

u, ~N(0,5°), ¢, ~N(0,6°%), u, and g, independent

Estimate B and & from the sample data set s (1me4, MIXED)
Calculate estimates U,, d =1...,D and calculate fitted values

Y. = x/B+U,, keU,, d=1..,D
Used in linear mixed model assisted GREG estimator (MGREG)
Lehtonen & Veijanen (1999), Lehtonen, Sarndal and Veljanen (2003)
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. EXAMPLE 9: Assisting model in GREG and
*  model-assisted calibration

Logistic fixed - effects model
for binary response variable y

E, (y,) = - PX)

1+ exp(x,B)
Estimate B from the sample data set s by ML
Calculate fitted values vy, = exp(ka)A , keU
1+ exp(x,B)

Used in logistic model assisted GREG estimator (LGREG)
Lehtonen & Veljanen (1998)
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“Wih. EXAMPLE 10: Assisting model in GREG and
» model-assisted calibration

Logistic mixed model for binary response variable y

exp(x,B+uy)
E u )= . keU,, d=1....D
m(yk‘ ) 1+ exp(x;B+uy) = .

where u, are domain-level random intercepts, u, ~ N(0,c?)

Estimate B and o° from the sample data set s (1me4, MIXED)
Calculate estimates U,, d =1,...,D and calculate fitted values:

Y, = exp(B+0,) kKeU, d=1..D
1+ exp(xk[3+u )

Used in logistic mixed model assisted GREG estimator (MLGREG)

Lehtonen, Sarndal & Veijanen (2005), Lehtonen & Veijanen (2009)
90
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W& Estimation of the model

= GLMMs can be fitted in R by:

= R packages nlme or Ime4 (glmer function) using maximum
likelihood

= GLMMs with survey weights for unit and domain level can
be fitted in SAS by:
= Procedures GLIMMIX (using ML) or MIXED (using REML or ML)
= R options for this purpose?

= Some classical references

= Generalized linear (fixed-effects) models (GLM)
Nelder & Wedderburn (1972) JRSS-A
McCullagh & Nelder (1982) Generalized Linear Models. Springer.

= Generalized linear mixed models (GLMM) family models
Demidenko (2005) Mixed Models: Theory and Applications. Wiley.
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¥ GREG estimator assisted by GLMM

" For an assisting GLMM for GREG the formulation of GREG
estimator for domain total and mean or proportion remains the
same. The difference is in obtaining the predicted y-values

MGREG estimator for domain total t, of continuous y-variable
Assisting model: Linear mixed model
Predicted values: y, = x/B+U,, keU,, d =1...,D
MLGREG for domain proportion p, of binary y-variable
Assisting model: Logistic mixed model:
eXp(X'k‘gfadA)  keU,, d=1..D
1+exp(x,B+uy,)
For MGREG and MLGREG the estimator is of the same form:

tAdGREG = Z yAk + Zak(yk _yAk)

kEUd keSd

Predicted values: y, =
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“¥&. Calibration estimator assisted by GLMM

Risto Lehtonen

For an assisting GLMM for model calibration estimator, the
formulation of the model-assisted calibration estimator for domain
total and mean or proportion remains the same.

The difference is in obtaining the predicted y-values

n

Calibration estimators t; =»' _ w,y,

w, method-specific calibration weight for element k
Weights are constructed to satisfy calibration equations:

Swe- Yo -(n 3]

Kesy keUy keUy

wherez,_=(1y,), s,=snU,,d=1...,D
Fitted values y, =f(x. (B +0,)) with x, = (1Xy,...,X,. ), k €U
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“¥&. EXAMPLE 11: Poverty rate

* Source: Lehtonen & Veijanen (2016a)

* The aim: Estimation of poverty rate for regions by using
GREG estimators assisted by logistic fixed-effects model
(LGREG estimator, Lehtonen & Veijanen 1998) and
logistic mixed model (MLGREG, Lehtonen, Sarndal &
Veljanen 2003)

* Methods:
* See separate paper

° NOTE: A related paper by Molina & Rao (2010)
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EXAMPLE on poverty rate estimation.pdf

Poverty rate: Results

Table 4 Absolute relative bias (ARB %) and relative root men squared error
(RRMSE %) of estimators of poverty rate in a design-based simulation experiment
of 1,000 SRSWOR samples.

ARB (%) RRMSE (%)
Expected domain Expected domain sample
Estimator sample size size

5-12 | 12-25 | 25-151 | 5-12 12-25 25-151

Direct estimator HT 17| 22 | 09 | 837 | 60.1 | 389

Indirect estimators
Assisting models

(a) Fixed-effects

logistic model with
domain-specific LGREG | 18| 19 | 09 | 837 | 59.9 | 385

intercepts

(b) Mixed logistic

model with domain-
specific random MLGREG | 20| 1.8 | 09 | 72.4 | 55.0 | 36.8

intercepts
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. Lessons learned - EXAMPLE 11

All estimators were nearly design unbiased as expected

Model choice had larger effect on RRMSE:

Fixed-effects logistic model with domain-specific intercepts did not
yield good results with the model-assisted LGREG estimator

The reason might be instable estimation, in the group of smallest
domains in particular

Note: There are 36 fixed intercept parameters to be estimated!

This result suggests that a fixed-effects model with domain-specific
parameters might not be a good idea if the number of domains is
large

The best results were obtained with the logistic mixed model
assisted MLGREG estimator

This estimator outperformed clearly the HT and LGREG estimators.
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Generalized regression GREG:
EXAMPLES from literature

* Simulation results and empirical examples statistical
properties of the extended family GREG estimators

* Lehtonen & Veijanen (1998)
 GREG assisted by logistic fixed-effects model (LGREG)
* Lehtonen & Veijanen (1999)
 GREG assisted by linear mixed model
* Lehtonen, Sarndal and Veijanen (2003, 2005)
 GREG assisted by linear mixed model (MGREG)
* GREG assisted by logistic mixed model (MLGREG)
° Lehtonen and Veijanen (2009)
 GREG assisted by linear and logistic mixed models
° Lehtonen, R., Veijanen, A., Myrskyla, M. and Valaste, M. (2011)
- AMELI project: GREG applications to poverty indicators
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= Model-assisted calibration

= |dea: Extension of model-free calibration beyond linear models
for continuous study variables to cover nonlinear models for
continuous variables and GLMs and GLMMs for binary,

polytomous and count type study variables
= E.g. Linear mixed models, Logistic mixed models

= Calibration principle in domain estimation:
Calibration of totals of model predictions estimated from sample
to agree with the population totals of model predictions

= NOTE: difference w.r.t. model-free calibration

= Model calibration:
Wu and Sitter (2001)
Montanari and Ranalli (2005, 2009)
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Model-assisted calibration
procedure for domains

° Modelling phase:
* Model specification
= Models with no domain-specific terms
= Models with (fixed or random) domain-specific terms
« The model is fitted using the entire sample data
« “Borrowing strength” from other (similar) domains)

* Predicted y-values are computed for every population element
by using the estimated model parameters and auxiliary x-data

° Calibration phase:

« Calibration of the sample total of predicted y-variable values to
the population level, domain level or an intermediate
(regional, spatial, neighborhood) level
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i\ Model-assisted calibration:
-  EXAMPLES from literature

* Simulation results and empirical examples on statistical
properties of model-assisted calibration estimators

° Lehtonen & Veijanen (2012)

 Calibration and GREG assisted by logistic fixed-effects model
and logistic mixed model

* Lehtonen & Veijanen (2016a,b)
« Calibration and GREG assisted by logistic mixed model

° Lehtonen, R., Vejjanen, A., Myrskyla, M. and Valaste, M. (2011)

« AMELI project: Model-assisted calibration applied to poverty
Indicators
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‘*‘ NOTE on computation

* Software for calibration and GREG
* SAS macro language programs by SCB, Statistics Canada, INSEE

e Zardetto (2015)

ISTAT: R package ReGenesees
http://www.istat.it/it/files/2014/05/Zardetto-j0s-2015-001 3. pdf

* R package sampling (Matei & Tille 2916)
https://cran.r-project.org/web/packages/sampling/sampling.pdf

°* R package icarus
https://cran.r-project.org/web/packages/icarus/icarus.pdf
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% CASE STUDY 1:
" Estimation of mean of “"Perceived
income” for regional domains

° Comparison of regional mean estimates using direct HT
and indirect GREG assisted with linear fixed-effects and
mixed models

* Data sources: EU-SILC data and statistical registers of
Statistics Finland

* Master Thesis in Statistics
Nico Maunula (2012). Small Area Estimation Methods with Application
to Perceived Income for Domains in Finland in 2009. Master’s Thesis,
University of Helsinki. (In Finnish)
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¥ Study setting

* Target population: N about 4,3 million
°* Regions (domains): D = 70 NUTS4 areas
* Sizes of regions vary (2000 — 1 million):

e Stratified unequal probability sampling

e Sample size n = 11,000 households

* Domains are of unplanned type
Smallest domain sample size: 10 persons
Largest domain sample size: 2425 persons

* CAPI interviews with household head as respondent

* Reweighting to adjust for unit nonresponse
* Model-free calibration for final weights w,
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& Auxiliary data

* Auxiliary data are taken from statistical registers covering the
target population

* Registers maintained by Statistics Finland

* Auxiliary data were merged with sample survey data at the unit
level by using unique identification keys

 Personal ID number
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¥ Study variable

* HS120: Ability to make ends meet

* Represents "experienced” (perceived) income (contrasted with
“actual” income)

» A subjective wellbeing indicator

* Ordinal level measurement with 6 levels
« 1 =lowest, 6 = highest
« Treated as continuous variable in modelling
« Mean =4.3in SILC data

« NOTE: Why “perceived income” This is because it is not
available in administrative registers!
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HS120: Ability to make ends meet

SOCIAL EXCLUSION (Non-monetary household deprivation indicators)
Cross-sectional and longitudinal
Reference period: current

Unit: household

Mode of collection: household respondent

Values
1 with great difficulty
2 with difficulty
3 with some difficulty
4 fairly easily
5 casily
6 very easily
Flags
1 filled
-1 missing

The household respondent’s assessment of the level of difficulty experienced by the
household in making ends meet.
A household may have different source of income and more than one household member may
contribute to it. Thinking of the household’s total monthly income, the idea is with which

level of difficulty the household is able to pay its usual expenses.
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¥ Auxiliary variables

* Variables (for HH head) from statistical registers
« Gender
« Age group (4 age groups)
* Education (3 classes)
 Actual (register) income
« Socio-economic status (6 classes)
- Stage In life of household-dwelling unit (5 classes)

* Categorical variables are transformed to indicator (dummy)
variables

* 16 x-variables in the regression model

e All variables statistically significant

* R squared =15%
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Linear fixed-effects model
Ve = By + BX + oot BXg + &, KeU, g 0 N(0,6°)
where beta coefficients are common for all domains

Linear mixed model

Y. =By Uy + BX oot PreXe + & KeUy, d=1,...,70
with domain-level random intercepts u, and common fixed
slope parameters
u, 0 N(0,5°), ¢ I N(0,5°), u, and ¢, independent
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‘*‘ Estimation of assisting models

GREG assisted by linear fixed-effects model
Model fitted by LS
Predicted values

V. = By + BX + oot PreXegr K€U

MGREG assisted by linear mixed model
Model fitted by REML
Predicted values

Y. =,BA0 + U, +,8Alxk +...+,316x16k, keU,, d=1..D
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= Estimators of regional means

Population mean for domaind:y, =t, /N,, d =1,...,70
HT estimator for domain means 'y,

n

t,r =Zkesd""kyw d=1..,70

Yaur = Lanr /Nd
wnere N, are known domain sizes in population
GREG estimators for domain means y,

tuores = Dy, Tk T 2ees, Wk Vi~ Vi) » d =1...,70

thREG / Nd

ﬁdGREG
where w, =a,g, are final calibrated weights (g-weights)
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“#&. Variance estimators
- (unplanned domains)

HT estimator for domain means
Vi (deT ) =Wy (thT )/ Nj

N
g El b 1

kes

where y, =l{k eU,}y, are extended y-variables

GREG estimators for domain means

~n n ~n n

Vo (deREG) =Vy ( dGREG)/ N2

N 2
= Nj(n _1) Z(Wkedk —Uinre / n)

kes

where e, =I{k eU_ }y, —y, are extended residuals
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‘*‘ Quality indicators

Standard error of domain mean estimate )?d
s.e(V,)= WV (7,) d=1...70

Coefficient of variation of domain mean estimate )?d

cv(¥y ) = S'e;yd) d=1..,70
d

Mean cv calculated in three domain size groups
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Table 5. Average coefficient of variation of HT, GREG and MGREG
estimates of domain totals by domain sample size class.
Sample size n = 11,000, D=70 NUTS3 unplanned domains.

Domain sample size class

Minor Medium-sized | Major All
Average domain sample size
34 72 325 152

Direct estimator
Design-based HT | 37.2 24.9 15.4 24.8
Indirect estimators

Model-assisted

GREG

Dt

Sl

3.6

MGREG

59

3.6

- | =
(o i (e

3.5

Risto Lehtonen

113



cvH

0.71
0.6{, *
05{ .
0.4 .
03% . .. ] o .. ..
02_ * te ® e '-.
1m . .'.'.
0.1] .
] m - " * *
] . " . . . " r
] - % “u " " nei """ .....l.l.... '...El"ll"l"ll.-lll-l J
0.04 — e — —— . L L -
0 10 20 30 40 50 60 70
id
*** cvHT mmEcvGREG 42+ cvMGREG

Risto Lehtonen

114




“#. CASE STUDY 2: Model-based
" EBLUP and weighted EBLUP

° QUESTION: How to account for unequal probability
sampling and weighting in model-based EBLUP
estimation?

° For example:
- Stratified sampling with non-proportional allocation
* PPS type sampling designs

° The role of survey weights?

* The role of design variables in the model?
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Multilevel models with survey
- weights
* Rabe-Hesketh (2006) Multilevel modelling of complex survey data. JRSS-A

169 (805-827).
* http://Iwww.gllamm.orq/JRSSAsurvey 06.pdf

* Carle A.C. (2009) Fitting multilevel models in complex survey data with design

weights: Recommendations. BMC Medical Research Methodology.
* https://bmcmedresmethodol.biomedcentral.com/articles/10.1186/1471-2288-9-49

* Example of using survey design weights in Imer: This is an example of how to
use survey design weights with linear mixed models using the Imer() function.
It follows the logic of[Carle 2009

* https://rpubs.com/corey sparks/27276

* WestB. (2016) Fitting Weighted Multilevel Models to Complex Sample Survey

Data in SAS: A Case Study
http://www.misuqg.org/uploads/8/1/9/1/8191072/bwest weighted multilevel models.pdf
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“$&. Options considered
* PPS-WOR sampling design (TTPS design)
° Continuous study variable y

° Linear mixed model with random intercepts

* Model-based EBLUP

* |Inclusion of PPS size variable in the model

* Pseudo model-based EBLUP = EBLUPW

* Incorporation of design weights in the estimation procedure of the
linear mixed model
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¥ Simulation experiments - 1

Population N = 1 million elements
D = 100 domains

Size of domain U, is proportional to exp(q,)
where q, Is simulated from Uniform(0,2.9)

47 minor domains (-69 elements)
19 medium-sized domains (70-119)
34 major domains (120-)

Risto Lehtonen
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¥ Simulation experiments - 2

PPS size variable x,: Uniform(1,11)

Variable x, (unrelated to the sampling design):
Uniform(-5,5)

Random intercept u,, and random slopes u,, and u,,:
Multinormal distribution

Var(uy,) =1, Var(uy,) =Var(u,,) =0.125

Corr (Ugy,Uyy) = Corr(Ugy,U,y) =—0.5, Corr (uy,,Uy,) =0
Residual ¢ followed N(0,100)
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‘*‘ Simulation experiments - 3

Values of the y-variable were generated as

yk = (IBO +u0d)+(181+u1d)xlk +(ﬁ2 +u2d)x2k +gk

:Bo — 181 — 182 =1
Note: Both random intercepts and random slopes

Correlations of the variables in the population

corr(y,x,) =0.441
corr(y,x,) =0.446
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& gimulation experiments - 4
Population N = 1,000,000
Sample n = 10,000
Monte Carlo experiments

K = 1000 independent PPS-WOR samples

Inclusion probabilities: 7z, =nxy /> X,
Weights a, =1/, varied between 54.5 and 599.8
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“¥* Models and estimators

EBLUP estimator of domain totals - basic form
teaiup = Zkeud Y., d=1..,100

Fitted models:

Special cases of linear mixed models with random
Intercepts: Y. =B, + Uy, + X+, kel
Models fitted by REML or pseudo REML (REML-W)
Predicted values: Y, = S, + 0., + X,

keU,, d=1...,100
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wi). Pseudo EBLUP: mixed model with survey
weights

Linear mixed model (matrix form) y=XB+Zu+e¢

Pseudo EBLUP (EBLUPW) estimators are derived by incorporating
design weights a, in ML-W and REML-W estimation procedures of

model parameters by using HT estimators for certain matrix
products (Domest and RDomest programs of Ari Veijanen)

Modification of matrix products of X, y, Z matrix (whose columns

are domain indicators), and e (the vector of residuals):
Matrix product A'B (A,B =X,Z,y,e) was replaced by

A'WB , where W is the diagonal matrix of design weights a,
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¥ Quality measures

Absolute relative bias (ARB) for domain d
1 1000

—— St (s)-t
1ooozd(v) d

v=1

ARB(t,) = /t,

Relative root mean squared error (RRMSE)

1000

R 1 R
RRMSE(t, )= |—— Y (t,(s.)-t,)*/t
() \/1000;<d<v> )1,

Average ARB and average RRMSE is computed
In each domain sample size class
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Table 1. Average ARB (%) and average RRMSE (%) of EBLUP

estimators.
Average ARB (%) |Average RRMSE (%)
Model and| Domain size class Domain size class
estimator | Minor | Medium | Major | Minor | Medium | Major
(20-69) | (70-119) | (120+) | (20-69) | (70-119) | (120+)
Model 1 y, =3 +u, +¢,
EBLUP| 19.7 19.51 20.3| 199 19.8| 20.6
EBLUPW W4 9] 2.1 6.8 B8 B
Model 2 y, =3 +u,+ Bx, +¢&
EBLUP 4.0 26| 23 5.4 52| 4.5
EBLUPW 5.6 3.0 1.9 6.3 6.1 5.5
Model 3 y, =43 +u,+ B,x,, +¢&
EBLUP| 19.6 19.6( 20.2| 199 19.9| 20.5
EBLUPW 3.4 2.9 1.9 6.5 6.4 <is

NOTE: Variable x, is the PPS size variable
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¥ Lessons learned - CASE STUDY 2

°* Mean ARB results: Bias can be large for misspecified model

°* Mean RRMSE results:
Squared bias component can still dominate the MSE
« Can be difficult to obtain proper confidence intervals

* Unequal probability sampling of PPS type can be successfully
accounted for in EBLUP with two options:
* Inclusion of the size variable into the model for model-based
EBLUP (Model 2)
* Use of pseudo EBLUP (EBLUPW) by incorporating design
weights in the estimation procedure of the model (all models

considered here)
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