

PISA, 8-10 MAY 2018

Multivariate Small Area Estimation of Multidimensional Economic Well-being Indicators: a focus on Housing Quality

Angelo Moretti¹², Natalie Shlomo¹ and Joseph Sakshaug³

VENT OF THE JEAN MONNET CHAIR S

¹Social Statistics Department, University of Manchester – United Kingdom
 ²Geography Department, University of Sheffield – United Kingdom
 ³German Institute for Employment Research, Nuremberg, Germany.

Outline

1. Data dimensionality reduction

2. Small area estimation via multivariate EBLUP

3. Simulation study

4. Application based on EU-SILC data

5. Future work

Data dimensionality reduction

- Multivariate statistical analysis techniques
 - \circ Depending on variable types: continuous, categorical, ordinal
- The problem of **weighting and aggregation** (OECD-JRC, 2008)
 - \circ Big debate on the methodology
 - Statistical models taking into account for the **degree of correlation** among the observed variables (dashboard of indicators)
 - Different type of variables
- Factor analysis models the use of the factor scores
 - Possible for any type of variables (transformations)
 - \circ Good rankings, smaller variability compared to the traditional weighted averages
 - FA model variability needs to be take into account in MSE estimation (Moretti, Shlomo and Sakshaug, 2017a)

The aim of this paper

- Evaluate EBLUP approach under BHF model (Battese et al. 1988) and <u>multivariate</u>
 <u>EBLUP</u> (MEBLUP) under Fuller and Harter model (Fuller and Harter, 1987) in data
 dimensionality reduction for latent well-being indicators
- Extension of Moretti, Shlomo and Sakshaug (2017a): univariate latent well-being
- Case of observed indicator <u>a priori</u> selected and studied in well-being frameworks
- The case of **averages of standardised EBLUPs** compared to the EBLUP of **factor scores means (multivariate and univariate case)**
- Simulation study and application using European Union Statistics on Income and Living Conditions (EU-SILC) Italian data.

Multivariate EBLUP approach

Target parameter: a vector of *K* means for small area *d*:

$$\overline{\mathbf{Y}}_{d} = N_{d}^{-1} \sum_{i=1}^{N_{d}} \mathbf{y}_{di},$$

$$\overline{\mathbf{Y}}_{d} = N_{d}^{-1} \left(\sum_{i \in s_{d}} \mathbf{y}_{di} + \sum_{i \in r_{d}} \mathbf{y}_{di} \right)$$

Multivariate nested-error model (Fuller and Harter, 1987)

$$y_{di} = x_{di}\beta + u_d + e_{di}, d = 1, ..., D, i = 1, ..., N_d,$$

$$u_d \sim N_K(\mathbf{0}, \boldsymbol{\Sigma}_u), \quad e_{di} \sim N_K(\mathbf{0}, \boldsymbol{\Sigma}_e) \quad u_d \text{ and } e_{di} \text{ are independent}$$

Model parameters estimated via ML (Datta et al. 1999)

Prediction (Fuller and Harter, 1987; Datta et al. 1999)

$$\widehat{\overline{Y}}_{d}^{MEBLUP} = \overline{X}'_{dp}\widehat{\beta} + \widehat{u}_{d} = \overline{X}'_{dp}\widehat{\beta} + (\overline{y}_{d} - \overline{x}'_{d}\widehat{\beta})[(\widehat{\Sigma}_{u} + n_{d}^{-1}\widehat{\Sigma}_{e})^{-1}\widehat{\Sigma}_{u}], d = 1, ..., D$$

$$\widehat{V}_{d} = 1, ..., D$$

Simulation study (1)

Generating the population

• From the multivariate nested-error model y_{di} with k=1,...4 are generated with:

 $N = 20,000, D = 80, 130 \le N_d \le 420,$ $N_d \sim \mathcal{U}(a = 130, b = 420)$

$$X_1 \sim \mathcal{U}(a = 145, b = 459)$$

 $X_2 \sim \mathcal{U}(a = 55, b = 345)$

• Different correlation structure in Σ_e and Σ_u :

$$r_u = r_e = 0.2,$$

 $r_u = 0.2 \text{ and } r_e = 0.7,$
 $r_u = -0.2 \text{ and } r_e = 0.7$

• Intra-class correlation: $ICC_k = \{0.05, 0.1, 0.3\}$ so we generate Σ_u matrices as functions of *ICC*.

Simulation study (2)

Simulation steps

1. Draw S = 500 samples using simple random sampling without replacement n=1000: allowing for **unplanned** domains

- 2. Estimate a *one-factor*, and *two-factors analysis* models and estimate the EBLUP and MEBLUP **factor score means** for each area *d* in each sample
- 3. EBLUP and MEBLUP on each of the original observed variables *y* and vectors *y* are also estimated: construct **simple averages** of the standardized small area EBLUPs and MEBLUPs' components and **weighted averages** using the factor loadings
- 4. Results are evaluated via RMSE, percentages of reduction in terms of RMSE, and relative bias.

Simulation study (3)

Case two-factor only

Table 1: Percentage relative reduction (%) in terms of RMSE of simple and weighted averages of standardised MEBLUP over EBLUP, two-factor CFA model.

		Scenario					
ICC _k		$r_{e}=0.7, r_{u}=0.2$		$r_e = 0.7, r_u = -0.2$		$r_e = 0.2, r_u = 0.2$	
		Simple	Weighted	Simple	Weighted	Simple	Weighted
0.05	Factor 1	-5.26	-5.29	-5.56	-6.52	-2.86	-2.94
	Factor 2	-3.90	-4.74	-20.99	-21.82	-0.43	-0.22
0.1	Factor 1	-8.89	-9.30	-26.67	-22.73	-0.50	-0.25
	Factor 2	-9.00	-11.08	-25.53	-26.67	0.00	0.00
0.3	Factor 1	-11.67	-11.88	-16.67	-17.92	-0.28	-0.29
	Factor 2	-13.89	-12.86	-19.87	-17.05	0.00	0.00

Simulation study (4)

Table 2: Percentage relative reduction (%) in terms of RMSE of MEBLUP over EBLUP, factor scores, two-factor CFA model

		Scenario				
ICC _k		$r_e=0.7, r_u=0.2$	$r_e=0.$ 7, $r_u=-0.$ 2	$r_e = 0.2, r_u = 0.2$		
0.05	Factor scores 1	-2.44	-2.50	0.00		
	Factor scores 2	-2.50	-2.56	0.00		
0.1	Factor scores 1	-2.56	-3.13	0.00		
	Factor scores 2	-3.33	-2.86	0.00		
0.3	Factor scores 1	-4.48	-5.56	0.00		
	Factor scores 2	-5.56	-6.67	0.00		

• The factor analysis model modified the correlation structure therefore percentage relative reductions change considerably

Application (1)

- Housing quality: dimension in multidimensional well-being Equitable and Sustainable Well-being **BES Italian framework**
- Determinant of well-being (Andrews et al. 2011)
- Data: European Union Statistics on Income and Living Conditions (EU-SILC) 2009 and Census of population and households 2001 (Censimento della popolazione e delle abitazioni)
- Small areas: Tuscany municipalities, unplanned domains in EU-SILC

Application (2)

Table 3: Factor loadings for two latent factors using explanatory factor analysis on EU-SILC observed variables

Variable	Factor 1	Factor 2
Severe material deprivation	0.010	0.733
Smog	0.757	0.025
Noise	0.617	0.154
Crime	0.659	0.130
Housing ownership	0.096	-0.589
Presence of humidity	0.010	0.596
Darkness inside the house	-0.002	0.551
Absence of rubbish in the street	-0.843	0.084
Absence of damages in public buildings	-0.810	0.012
Log equivalised disposable income	0.139	-0.398

Factor 1: residential area deprivationFactor 2: housing material deprivation

Goodness-of-fit two-factor
RMSEA: 0.040
CFI: 0.925
TLI: 0.901

Data dimensionality reduction

Factor scores: FA allowing for different types of observed variables

No multivariate EBLUP on the dashboard: variables are on different scales

Application (3)

- MSE estimated via parametric bootstrap (Moretti, Shlomo and Sakshaug, 2018)
- Percentage relative reduction (averaged)

6.41% and 7.90%

 $\hat{r}_e = 0.10, \hat{r}_u = 0.78$ $\widehat{ICC}_{f_1} = 0.21, \widehat{ICC}_{f_2} = 0.0.09$

Percentile	0%	25%	50%	75%	100%
Residential area deprivation	0.000	0.261	0.266	0.270	1.000
Housing material deprivation	0.000	0.418	0.457	0.502	1.000

Conclusion and future work

- Confirmed what found previously in the multivariate SAE literature: gains in efficiency of multivariate EBLUP over the univariate EBLUP depend on *ICC*, sign and magnitude of r_u and r_e
- Since factor analysis models may change the correlation (and variance) structure in the observed data, this needs to be considered in the multivariate modelling: multivariate EBLUP may not provide large gains
- **Current and future work** is about the use of multivariate generalised mixed models in small area estimation: allowing for different types of responses
- Factor analysis models allow for different types of responses in data dimensionality reduction.

Thank you

Contact information

Dr Angelo Moretti Researcher in Small Area Estimation Methods University of Manchester - University of Sheffield (U.K.) angelo.moretti@manchester.ac.uk or a.moretti@sheffield.ac.uk

